213 resultados para RESINOUS SOLVENT
Resumo:
The synthesis of fine chemicals intermediates using Friedel-Crafts acylation is one of the most important methods in chemical technology. In this work, the acylation of 2-methoxynaphthalene with acetic anhydride using a silica-supported dodecatungstophosphoric acid catalyst (HPW/SiO2) and acetonitrila as solvent was studied, showing that this reaction is a feasible alternative to produce intermediaries to replace the current methods of production. The reactions using acetonitrile solvent showed yields greater than or equal to the reactions using traditional solvents such as nitrobenzene and dichloroethane. Finally, the modified Eley-Rideal mechanism was proposed to elucidate the experimental data obtained.
Resumo:
An analytical method based on high-performance liquid chromatography with electrochemical detection has been developed and applied to the determination of Solvent blue 14 (SA-14) and Solvent red 24 (SV-24) in fuel samples. The dyes were better separated on C18 column, using a mobile phase composed of acetonitrile and ammonium acetate (90:10, v/v). Detection was carried out at an oxidation potential of +0.85V. The detector response was linear at concentration range of 7.50×10-8 - 1.50×10-6 mol L-1 (r = 0.997) for SA-14 and SV-24, respectively. The method was used to quantify these dyes in fuels samples with satisfactory accuracy and precision.
Resumo:
This work focus on the influence of solvent on the photophysical properties of chlorophyll α and pheophytin. Both compounds are related to the photosynthesis process and are considered prototypes of photosensitizers in Photodynamic Therapy. Fluorescence measurements were developed using water/ethanol mixtures at different compositions, since both solvents could be employed in biological applications. The spectroscopic properties of these compounds undergo profound changes depending on water content in the ethanol due to auto-aggregation processes. The major hydrophobicity and the lower dielectric constant of ethanol when compared with water precluded significantly the auto-aggregation process of these compounds.
Resumo:
The development of modern analytical tools plays an important role in quality control. The main purpose of this study was to explore the use of subcritical water as a versatile analytical tool, employed simultaneously as a reagent and solvent, as well as the application of high temperature-high resolution gas chromatography (HT-HRGC) to develop a procedure for the analysis of triacylglycerides and fatty acids in Azadirachta indica A. Juss. (Neem) oil without the need for solvents, chemical reagents, or catalytic agents. The developed method presented satisfactory results and is in agreement with the concepts of Green Analytical Chemistry (GAC).
Resumo:
Recent advances for improving physicochemical and nutritional properties of lipids are reviewed, with emphasis on products attaining by biochemical processing of natural fats and oils. Enzymatic interesterification provides an important route to modify physical and nutritional properties of milkfat without generating trans isomers. This process makes use of lipases, a versatile class of enzyme that is able to perform efficiently the target modification in both solvent and solvent free systems. The present review covers important features of lipases, lipase-catalyzed interesterification reactions and their effects on the composition and texture of the resulting product.
Resumo:
Spectrophotometric methods of zero order, first and second derived order had been developed for olanzapine determination in tablets using ethanol and isopropanol as solvent. The two solvents revealed to be adequate. For the three methods the calibration curve coefficient of correlation had been greater than 0.9998 with limit of detection varying from 0.068 to 0.190 mg L-1, in ethanol, and 0.026 to 0.205 mg L-1, in isopropanol. The inter-day precision was inferior to 1.1 and 1.9 mg L-1 for ethanol and isopropanol, respectively. The average recoveries varied from 98 to 101%, in ethanol and 99 to 103% in isopropanol.
Resumo:
Titania-supported Ir catalysts were used in the hydrogenation of furfural. Reactions were carried out in a stirred batch type reactor at 0.62MPa and 363K using a 0.10M solution of furfural in a 1:1 mixture n-heptane -ethanol as solvent. Catalysts containing 2 wt% of Ir were reduced in H2 flow at different temperatures in the range 473-773K. The catalysts were characterized by H2 chemisorption, TEM, TPR, TPD of NH3 and XPS. Conversion of furfural is higher at lower reduction temperatures, but leads to byproducts whereas reduction at higher temperatures shows selectivity to furfuryl alcohol close to 100%.
Resumo:
Multiresidue methods for pesticides monitoring by GC are commonly employed, however, it is well known that the presence of compounds of the matrix introduces errors during the quantiûcation. The main consequence of matrix effect is an increasing or decreasing analyte signal after the GC saturation with extracts of matrix. In this paper, the influence of constituents of nine matrices on the quantification of the four pesticides by GC-ECD was studied. Variation of signal was evaluated by PCA and HCA, and results showed that the constituents of tomato increased the signal (until 300%), while extracts of apple decreased (until -20%). Variation the analyte signal in the presence of the matrix in respect to the same analyte in solvent (standard solution) also was observed, mainly for liver extract (until 270%).
Resumo:
A method based on matrix solid-phase dispersion and gas chromatography-mass spectrometry to determine procymidone, malathion, bifenthrin and pirimicarb in honey is described. The best results were obtained using 1.0 g of honey, 1.0 g of silica-gel as dispersant sorbent and acetonitrile as eluting solvent. The method was validated by fortified honey samples at three concentration levels (0.2, 0.5 to 1.0 mg kg-1). Average recoveries (n=7) ranged from 54 to 84%, with relative standard deviations between 3.7 and 8.5%. Detection and quantification limits attained by the developed method ranged from 0.02 to 0.08 mg kg-1 and 0.07 to 0.25 mg kg-1 for the honey, respectively.
Resumo:
The objective of this study was to evaluate the use of the matrix solid-phase dispersion technique associated with purification at low temperature for the determination of pyrethroids in butter. Evaluated parameters included: sample/adsorbent ratio, type of adsorbent and extractor solvent. The optimized method was validated based on predetermined requirements. The detection limits of the pyrethroids cypermethrin and deltamethrin were 0.082 and 0.11 μg g-1, and quantification limit were 0.28 and 0.32 μg g-1, respectively, with extraction percentages near 90% and coefficients of variation less than of 10%..
Resumo:
Thermogravimetry (TG) and differential scanning calorimetry (DSC) are used in pharmaceutical studies for drugs characterization, purity, formulations compatibility, polymorphism identification, stability evaluation, and thermal decomposition of drugs and pharmaceutical formulations. Simvastatin showed fusion at 138.5 ºC and thermal stability up to 248 ºC. Simvastatin was incompatible with preservative excipient butylhydroxyanisole (BHA) performing a process of crystal amorphization. The drug showed morphological polymorphism, where it has the same unit cell but with different crystal habits according to the recrystallization solvent.
Resumo:
Water-in-crude oil emulsions are formed during petroleum production and asphaltenes play an important role in their stabilization. Demulsifiers are added to destabilize such emulsions,however the demulsification mechanism is not completely known. In this paper, the performances of commercial poly(ethylene oxide-b-propylene oxide) demulsifiers were studied using synthetic water-in-oil emulsions and model-systems (asphaltenes in organic solvent). No change in the asphaltene aggregate size induced by the demulsifier was observed. The demulsification performance decreased as the asphaltene aggregate size increased, so it can be suggested that the demulsification mechanism is correlated to the voids between the aggregates adsorbed on the water droplets surface.
Resumo:
A systematic study of the reaction of β-hydroxy ethers with ruthenium tetraoxide (RuO4), generated in situ from ruthenium trichloride and sodium periodate, is presented, leading to nine-membered ring keto-lactones in moderate yields. Three different solvent systems - AcOEt/MeCN/H2O, MeCN/H2O and DMC/H2O - were studied leading to the desired products in lower yields than those obtained with the classical mixture of CCl4/MeCN/H2O, commonly used in reactions promoted by this oxidant. However, it is noteworthy that these new solvent systems represent greener alternatives to the chlorinated solvents used in the oxidative cleavage of β-hydroxy ethers by RuO4.
Resumo:
The effects of solvents on chemical phenomena is complex because there are various solute-solvent interaction mechanisms. Solvatochromism refers to the effects of solvents on the spectra of probes. The study of this phenomenon sheds light on the relative importance of the solvation mechanisms. Solvation in pure solvents is quantitatively analyzed in terms of a multi-parameter equation. In binary solvent mixtures, solvation is analyzed by considering the organic solvent, S, water, W, and a 1:1 hydrogen bonded species (S-W). The applications of solvatochromism to understand distinct chemical phenomena, reactivity and swelling of cellulose, is briefly discussed.
Resumo:
Solid lipid nanoparticles (SLN), nanoemulsions (NE), and microemulsions (ME) were prepared by the hot solvent diffusion method, using tristearin or castor oil as oily phase, and soy lecithin and Solutol HS 15 as surfactants. Mean particle sizes ranged from 20 to 215 nm and negative zeta potentials were obtained for all nanocarriers. A HPLC method used to determine resveratrol was specific, linear, exact and precise. The entrapment efficiency was high for all formulations. However, resveratrol content was significantly varied among the lipid nanocarriers. Lipid nanocarrier containing hydrogels exhibiting pseudoplastic behavior were obtained after incorporation of hydroxyethylcellulose in the colloidal dispersions.