138 resultados para RELATIVE-HUMIDITY
Resumo:
The objective of this study was to characterize the microclimatic profile of broiler transport trucks under commercial conditions, in the summer, by continuous monitoring of environmental variables (temperature and air relative humidity). Three loads were monitored from farm to slaughterhouse, considering factors such as distance and day periods (morning, afternoon, and night). To obtain the profile of the environmental variables during journey, data loggers, that determined the microclimate to which birds were submitted, were installed in the trucks; data loggers also allowed visualization of the Enthalpy Comfort Index (ECI) so that load regions could be classified according to heat comfort limits for 6-week old poultries. Temperature, relative humidity, and ECI in the truck were analyzed, using geostatistics, by the ordinary kriging method. The afternoon was the most critical period, and truck central and rear regions were most problematic for chickens, thus most susceptible to losses.
Resumo:
Broiler production is highly dependent on the use of artificial light. The light source may affect the effectiveness of housing conditions due to increasing ambient temperature and concentration of noxious gases. This research aimed to evaluate the effects of different bulb types on the thermal, aerial, and acoustic environment of broiler aviaries. The experiment was carried out at a commercial broiler farm in Dourados, Mato Grosso do Sul State, Brazil. Three aviaries were used, and two flocks of male broilers from Cobb® genetic strain were reared from the first day to slaughter. Each aviary was equipped with a different light source, comprising the adopted treatments (A1 - incandescent light bulb, control; A2 - sodium vapor light bulb; A3 - fluorescent light bulb). The aviaries were divided into nine quadrants, and the environmental data (ambient dry bulb temperature and relative humidity), litter surface temperature, CO2 and NH3 concentrations, and bird sound pressure behavior were recorded in each quadrant. The aviary with incandescent light presented higher air and litter temperatures, and concentration of gases than the other tested alternatives. It also presented higher level of sound pressure in the second week of the growing period; however, from this period up to slaughter, there was no effect of the light source on the results of broiler sound pressure level.
Resumo:
Radiation balance is the fraction of incident solar radiation upon earth surface which is available to be used in several natural processes, such as biological metabolism, water loss by vegetated surfaces, variation of temperature in farming systems and organic decomposition. The present study aimed to assess and validate the performance of two estimation models for Rn in Ponta Grossa city, Paraná State, Brazil. To this end, during the period of 04/01/2008 to 04/30/2011, from radiometric data collected by an automatic weather station set at the Experimental Station, of the State University of Ponta Grossa. We performed a linear regression study by confrontation between measurements made through radiometric balance and Rn estimates obtained from Brunt classical method, and the proposed method. Both models showed excellent performance and were confirmed by the statistical parameters applied. However, the alternative method has the advantage of requiring only global solar radiation values, temperature, and relative humidity.
Resumo:
Sweet pepper is one of the ten most consumed vegetables in world. Although it develops better under protected environment, the cultivation in tropical countries is practiced in open field due greenhouse structure higher costs. Unfortunately, such practice has compromised the crop to reach either best yield or fruit quality. Since production and cost are the most important criteria for agricultural production, we aimed to evaluate reflective aluminized polypropylene shading net influence on sweet pepper (Capsicum annuum L.) growth and production as intermediary alternative for low/middle income producers from Brazilian tropical regions. Sweet pepper Magali R hybrid was cultivated in two environments: FC - field conditions (control) and RS - reflective shading net with 40% shading rate. RS caused reductions in incident solar radiation (SR) and photosynthetically active radiation (PAR) on the amount of 46.3% and 48.3%, respectively. There were no significant changes in temperature and relative humidity recorded for the two environments. In addition, RS allowed best use efficiency of photosynthetically active radiation since it promoted higher values of plant height, leaf number and area index than those reached on FC on the amount of 29%, 22% and 80 %, respectively. Similarly, plants grown under RS showed higher yield and marketable fruits and promoted less loses by sunscald.
Resumo:
The Knowledge of the physical properties of agricultural products has great importance for the construction and operation of equipment for drying and storage, to achieve increased efficiency in post-harvest operations. The aim was to determine and analyze the physical properties of crambe fruits during drying at different temperatures. Crambe fruits with an initial moisture content of 0.36 (decimal d.b.) which was reduced by drying at 37.0; 58.8 and 83.5 ºC and relative humidity of 29.4; 11.2 and 3.2%, respectively, to 0.09 ± 1 (decimal d.b.). At different levels of moisture contents (0.36; 0.31; 0.26; 0.21; 0.17; 0.13 and 0.09 decimal d.b.), was evaluated the intergranular porosity, the bulk density, the true density as well as the volumetric shrinkage and the fruit mass. The study was installed by the factorial 3 x 7, and three drying temperatures and seven moisture contents in a randomized design. Data were analyzed using regression. The bulk density and the true density decreases along the drying process; the volumetric shrinkage and the mass increased with lower moisture content and the intergranular porosity decreased sharply with the increasing drying temperature.
Resumo:
Pigs are more sensitive to high environmental temperatures explained by the inability of sweating and panting properly when compared to other species of farmed livestock. The evaporative cooling system might favor the thermal comfort of animals during exposure to extreme environmental heat and reduce the harmful effects of heat stress. The purpose of this study was to assess the sensible heat loss and thermoregulation parameters from lactating sows during summer submitted to two different acclimatization systems: natural and evaporative cooling. The experiment was carried out in a commercial farm with 72 lactating sows. The ambient variables (temperature, relative humidity and air velocity) and sows physiological parameters (rectal temperature, surface temperature and respiratory rate) were monitored and then the sensible heat loss at 21days lactation was calculated. The results of rectal temperature did not differ between treatments. However, the evaporative cooling led to a significant reduction in surface temperature and respiratory rate and a significant increase in the sow's sensible heat loss. It was concluded that the use of evaporative cooling system was essential to increase sensible heat loss; thus, it should reduce the negative effects of heat on the sows' thermoregulation during summer.
Resumo:
Based on experimental tests, it was obtained the equations for drying, equilibrium moisture content, latent heat of vaporization of water contained in the product and the equation of specific heat of cassava starch pellets, essential parameters for realizing modeling and mathematical simulation of mechanical drying of cassava starch for a new technique proposed, consisting of preformed by pelleting and subsequent artificial drying of starch pellets. Drying tests were conducted in an experimental chamber by varying the air temperature, relative humidity, air velocity and product load. The specific heat of starch was determined by differential scanning calorimetry. The generated equations were validated through regression analysis, finding an appropriate correlation of the data, which indicates that by using these equations, can accurately model and simulate the drying process of cassava starch pellets.
Resumo:
One approach to verify the adequacy of estimation methods of reference evapotranspiration is the comparison with the Penman-Monteith method, recommended by the United Nations of Food and Agriculture Organization - FAO, as the standard method for estimating ET0. This study aimed to compare methods for estimating ET0, Makkink (MK), Hargreaves (HG) and Solar Radiation (RS), with Penman-Monteith (PM). For this purpose, we used daily data of global solar radiation, air temperature, relative humidity and wind speed for the year 2010, obtained through the automatic meteorological station, with latitude 18° 91' 66" S, longitude 48° 25' 05" W and altitude of 869m, at the National Institute of Meteorology situated in the Campus of Federal University of Uberlandia - MG, Brazil. Analysis of results for the period were carried out in daily basis, using regression analysis and considering the linear model y = ax, where the dependent variable was the method of Penman-Monteith and the independent, the estimation of ET0 by evaluated methods. Methodology was used to check the influence of standard deviation of daily ET0 in comparison of methods. The evaluation indicated that methods of Solar Radiation and Penman-Monteith cannot be compared, yet the method of Hargreaves indicates the most efficient adjustment to estimate ETo.
Resumo:
This study aimed at evaluating the effects of ethylene on peel color and compositional changes in ‘Lane late’ orange stored under refrigerated and ambient conditions. Physiologically mature, but green-peeled, oranges were exposed to ethylene gas under room temperature and high relative humidity for 24 hours. Storage chamber was ventilated with fresh air after 12 hours to mitigate consequences derived from fruit respiration. Both nondestructive analysis, such as peel color (hue angle, chromaticity, and brightness) and weight loss, and destructive ones (soluble solids, titratable acidity, pH, soluble solids to acidity ratio, and puncture force) were performed upon harvest, after degreening, and every three days during eighteen days in storage. Experiment was carried out using an entirely randomized design with thirty replications for nondestructive and four replications for destructive analyses, in a split plot scheme. Exposure to ethylene ensured a golden yellow peel for both fruit stored under ambient and refrigerated conditions. High relative humidity, associated with low temperature prevented fruit from losing moisture. Fruit exposure to ethylene did not affect weight loss, soluble solids, titratable acidity, pH, soluble solids, acidity ratio, or puncture force.
Resumo:
ABSTRACT Global warming increases the occurrence of events such as extreme heat waves. Research on thermal and air conditions affecting broiler-rearing environment are important to evaluate the animal welfare under extreme heat aiming mitigation measures. This study aimed at evaluating the effect of a simulated heat wave, in a climatic chamber, on the thermal and air environment of 42-day-old broilers. One hundred and sixty broilers were housed and reared for 42 days in a climatic chamber; the animals were divided into eight pens. Heat wave simulation was performed on the 42nd day, the period of great impact and data sampling. The analyzed variables were room and litter temperatures, relative humidity, concentrations of oxygen, carbon monoxide and ammonia at each pen. These variables were assessed each two hours, starting at 8 am, simulating a day heating up to 4 pm, when it is reached the maximum temperature. By the results, we concluded that increasing room temperatures promoted a proportional raise in litter temperatures, contributing to ammonia volatilization. In addition, oxygen concentrations decreased with increasing temperatures; and the carbon monoxide was only observed at temperatures above 27.0 °C, relative humidity higher than 88.4% and litter temperatures superior to 30.3 °C.
Resumo:
Brazil has high climate, soil and environmental diversity, as well as distinct socioeconomic and political realities, what results in differences among the political administrative regions of the country. The objective of this study was to determine spatial distribution of the physical, climatic and socioeconomic aspects that best characterize the production of dairy goats in Brazil. Production indices of milk per goat, goat production, milk production, as well as temperature range, mean temperature, precipitation, normalized difference vegetation index, relative humidity, altitude, agricultural farms; farms with native pasture, farms with good quality pasture, farms with water resources, farms that receive technical guidance, family farming properties, non-familiar farms and the human development index were evaluated. The multivariate analyses were carried out to spatialize climatic, physical and socioeconomic variables and so differenciate the Brazilian States and Regions. The highest yields of milk and goat production were observed in the Northeast. The Southeast Region had the second highest production of milk, followed by the South, Midwest and North. Multivariate analysis revealed distinctions between clusters of political-administrative regions of Brazil. The climatic variables were most important to discriminate between regions of Brazil. Therefore, it is necessary to implement animal breeding programs to meet the needs of each region.
Resumo:
Herbicides that inhibit the enzyme protoporphyrinogen oxidase (PROTOX) are usually effective to control dicotyledonous weeds and their agronomic efficacy is affected by environmental and physiological factors. The objective of this review is to summarize the knowledge of those factors available in the scientific literature in the last decade. Environmental factors that influence PROTOX inhibitors include temperature, irradiance and relative humidity. The most relevant physiological factors are the activity of enzymes that can detoxify herbicides and also of enzymes that mitigate the effects of oxidative stress in plants. The study also suggests some possible management strategies that could optimize the activity of PROTOX-inhibiting herbicides.
Resumo:
ABSTRACTEfficiency of weed control can be increased if the herbicide formulation provides higher target coverage and evaporation time that enable an adequate distribution of herbicide on the target plant, allowing the absorption to continue even after the droplets evaporation. The aim of this research was to assess the influence of glyphosate formulations on the wetted area and evaporation time of droplets on different targets. Tests were conducted with droplets sizing from 500 μm containing three formulations of glyphosate (isopropylamine salt, ammonium salt and potassium salt) deposited on three surfaces, two leaves (Bidens pilosa and Cenchrus echinatus) and glass slides. Sequential images analyses were used to quantify the evaporation time and the wetted area. An experimental system was utilized that was composed of a droplet generator, a stereo microscope with a camera to capture images, as well as an environmental chamber controlled for temperature and relative humidity. The kind of glyphosate formulations and target surfaces are crucial in the wetted area and evaporation time. The isopropylamine salt decreased the wetted area and evaporation time when compared with ammonium salt and potassium salt for all the surfaces deposited on. Bidens pilosa allows an increased wetted area for all the glyphosate formulations when compared to Cenchrus echinatus and glass slides.
Resumo:
The stable carbon isotopic composition of 165 grass species was determined with the objective of verifying their photosynthetic pathway (C3 and C4). The samples, taken from the INPA herbarium, were mainly collected in the North of Brazil. Approximately 60% of the species proved to be of the C4 type, with d 13C values ranging from -13.6 to -9.5, while the remainder 40% belonged to the C3 type, with values ranging from -34.7 to -23.4. This relatively high proportion of C3 species is probably due to the high relative humidity of the sites where the species were collected.
Resumo:
An increase in daily mortality from myocardial infarction has been observed in association with meteorological factors and air pollution in several cities in the world, mainly in the northern hemisphere. The objective of the present study was to analyze the independent effects of environmental variables on daily counts of death from myocardial infarction in a subtropical region in South America. We used the robust Poisson regression to investigate associations between weather (temperature, humidity and barometric pressure), air pollution (sulfur dioxide, carbon monoxide, and inhalable particulate), and the daily death counts attributed to myocardial infarction in the city of São Paulo in Brazil, where 12,007 fatal events were observed from 1996 to 1998. The model was adjusted in a linear fashion for relative humidity and day-of-week, while nonparametric smoothing factors were used for seasonal trend and temperature. We found a significant association of daily temperature with deaths due to myocardial infarction (P < 0.001), with the lowest mortality being observed at temperatures between 21.6 and 22.6ºC. Relative humidity appeared to exert a protective effect. Sulfur dioxide concentrations correlated linearly with myocardial infarction deaths, increasing the number of fatal events by 3.4% (relative risk of 1.03; 95% confidence interval = 1.02-1.05) for each 10 µg/m³ increase. In conclusion, this study provides evidence of important associations between daily temperature and air pollution and mortality from myocardial infarction in a subtropical region, even after a comprehensive control for confounding factors.