152 resultados para Porcine proliferative enteritis
Resumo:
Patients with American cutaneous leishmaniasis were studied before therapy (active lesion) and at the end of therapy (cured patients). Assays of lymphocyte proliferative responses of peripheral blood mononuclear cells induced in vitro by Leishmania braziliensis promastigote antigens (Lb) were performed. Antigen-stimulated cells were harvested for CD4 and CD8 phenotype analysis and the levels of gamma interferon (IFN-g) and interleukin 4 (IL-4) produced were also determined in the culture supernatants. Two different patterns of Lb-induced T cell responses were observed: a) predominance of responding CD4+ cells and mixed type 1 and type 2 cytokine production (IFN-g and IL-4) during the active disease, and b) similar proportions of responding CD4+ and CD8+ cells, and type 1 cytokine production (presence of IFN-g and very low IL-4) at the end of therapy (healed lesions). This last pattern is probably associated with a beneficial T cell response
Resumo:
The role of different cytokines in the peripheral blood mononuclear cell (PBMC) proliferative response and in in vitro granuloma formation was evaluated in a cross-sectional study with patients with the different clinical forms and phases of Schistosoma mansoni infection, as well as a group of individuals "naturally" resistant to infection named normal endemic (NE). The blockage of IL-4 and IL-5 using anti-IL-4 and anti-IL-5 antibodies significantly reduced the PBMC proliferative response to soluble egg (SEA) and adult worm (SWAP) antigens in acute (ACT), chronic intestinal (INT) and hepatosplenic (HS) patients. Similar results were obtained in the in vitro granuloma formation. Blockage of IL-10 had no significant effect on either assay using PBMC from ACT or HS. In contrast, the addition of anti-IL-10 antibodies to PBMC cultures from INT patients significantly increased the proliferative response to SEA and SWAP as well as the in vitro granuloma formation. Interestingly, association of anti-IL-4 and anti-IL-10 antibodies did not increase the PBMC proliferative response of these patients, suggesting that IL-10 may act by modulating IL-4 and IL-5 secretion. Addition of recombinant IL-10 decreased the proliferative response to undetectable levels when PBMC from patients with the different clinical forms were used. Analysis of IFN-g in the supernatants showed that PBMC from INT patients secreted low levels of IFN-g upon antigenic stimulation. In contrast, PBMC from NE secreted high levels of IFN-g. These data suggest that IL-10 is an important cytokine in regulating the immune response and possibly controlling morbidity in human schistosomiasis mansoni, and that the production of IFN-g may be associated with resistance to infection.
Resumo:
Classical studies of macroglial proliferation in muride rodents have provided conflicting evidence concerning the proliferating capabilities of oligodendrocytes and microglia. Furthermore, little information has been obtained in other mammalian orders and very little is known about glial cell proliferation and differentiation in the subclass Metatheria although valuable knowledge may be obtained from the protracted period of central nervous system maturation in these forms. Thus, we have studied the proliferative capacity of phenotypically identified brain stem oligodendrocytes by tritiated thymidine radioautography and have compared it with known features of oligodendroglial differentiation as well as with proliferation of microglia in the opossum Didelphis marsupialis. We have detected a previously undescribed ephemeral, regionally heterogeneous proliferation of oligodendrocytes expressing the actin-binding, ensheathment-related protein 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), that is not necessarily related to the known regional and temporal heterogeneity of expression of CNPase in cell bodies. On the other hand, proliferation of microglia tagged by the binding of Griffonia simplicifolia B4 isolectin, which recognizes an alpha-D-galactosyl-bearing glycoprotein of the plasma membrane of macrophages/microglia, is known to be long lasting, showing no regional heterogeneity and being found amongst both ameboid and differentiated ramified cells, although at different rates. The functional significance of the proliferative behavior of these differentiated cells is unknown but may provide a low-grade cell renewal in the normal brain and may be augmented under pathological conditions.
Resumo:
It has been shown that HLA class I molecules play a significant role in the regulation of the proliferation of T cells activated by mitogens and antigens. We evaluated the ability of mAb to a framework determinant of HLA class I molecules to regulate T cell proliferation and interferon gamma (IFN-g) production against leishmania, PPD, C. albicans and tetanus toxoid antigens in patients with tegumentary leishmaniasis and healthy subjects. The anti-major histocompatibility complex (MHC) mAb (W6/32) suppressed lymphocyte proliferation by 90% in cultures stimulated with aCD3, but the suppression was variable in cultures stimulated with leishmania antigen. This suppression ranged from 30-67% and was observed only in 5 of 11 patients. IFN-g production against leishmania antigen was also suppressed by anti-HLA class I mAb. In 3 patients IFN-g levels were suppressed by more than 60%, while in the other 2 cultures IFN-g levels were 36 and 10% lower than controls. The suppression by HLA class I mAb to the proliferative response in leishmaniasis patients and in healthy controls varied with the antigens and the patients or donors tested. To determine whether the suppression is directed at antigen presenting cells (APCs) or at the responding T cells, experiments with antigen-primed non-adherent cells, separately incubated with W6/32, were performed. Suppression of proliferation was only observed when the W6/32 mAb was added in the presence of T cells. These data provide evidence that a mAb directed at HLA class I framework determinants can suppress proliferation and cytokine secretion in response to several antigens.
Resumo:
Eric Newsholme's laboratory was the first to show glutamine utilization by lymphocytes and macrophages. Recently, we have found that neutrophils also utilize glutamine. This amino acid has been shown to play a role in lymphocyte proliferation, cytokine production by lymphocytes and macrophages and phagocytosis and superoxide production by macrophages and neutrophils. Knowledge of the metabolic fate of glutamine in these cells is important for the understanding of the role and function of this amino acid in the maintenance of the proliferative, phagocytic and secretory capacities of these cells. Glutamine and glucose are poorly oxidized by these cells and might produce important precursors for DNA, RNA, protein and lipid synthesis. The high rate of glutamine utilization and its importance in such cells have raised the question as to the source of this glutamine, which, according to current evidence, appears to be muscle.
Resumo:
TGF-ß1 regulates both cellular growth and phenotypic plasticity important for maintaining a growth advantage and increased invasiveness in progressively malignant cells. Recent studies indicate that TGF-ß-1 stimulates the conversion of epitheliod to fibroblastoid phenotype which presumably leads to the inactivation of growth-inhibitory effects by TGF-ß1 (Portella et al. (1998) Cell Growth and Differentiation, 9: 393-404). Therefore, the investigation of TGF-ß1 signaling that leads to altered growth and migration may provide novel targets for the prevention of increased cell growth and invasion. Although much attention has been paid to TGF-ß1 responses in epithelial cells, the above studies suggest that examination of signal transduction pathways in fibroblasts are important as well. Data from our laboratory are consistent with the concept that TGF-ß1 can act as a regulatory switch in density-dependent C3H 10T1/2 fibroblasts capable of either promoting or delaying G1 traverse. The regulation of this switch is proposed to occur prior to pRb phosphorylation, namely prior to activation of cyclin-dependent kinases. The current study is concerned with the evaluation of a key cyclin (cyclin D1) which activates cdk4 and p27KIP1 which in turn inhibit cdk2 in the proliferative responses of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) and their modulation by TGF-ß1. Although the molecular events that lead to elevation of cyclin D1 are not completely understood, it appears likely that activation of p42/p44MAPK kinases is involved in its transcriptional regulation. TGF-ß1 delayed EGF- or PDGF-induced cyclin D1 expression and blocked the induction of active p42/p44MAPK. The mechanism by which TGF-ß1 induces a block in p42/p44MAPK activation is being examined and the possibility that TGF-ß1 regulates phosphatase activity is being tested.
Resumo:
Endometrium is one of the fastest growing human tissues. Sex hormones, estrogen and progesterone, in interaction with several growth factors, control its growth and differentiation. Insulin-like growth factor 1 (IGF-1) interacts with cell surface receptors and also with specific soluble binding proteins. IGF-binding proteins (IGF-BP) have been shown to modulate IGF-1 action. Of six known isoforms, IGF-BP-1 has been characterized as a marker produced by endometrial stromal cells in the late secretory phase and in the decidua. In the current study, IGF-1-BP concentration and affinity in the proliferative and secretory phase of the menstrual cycle were measured. Endometrial samples were from patients of reproductive age with regular menstrual cycles and taking no steroid hormones. Cytosolic fractions were prepared and binding of 125I-labeled IGF-1 performed. Cross-linking reaction products were analyzed by SDS-polyacrylamide gel electrophoresis (7.5%) followed by autoradiography. 125I-IGF-1 affinity to cytosolic proteins was not statistically different between the proliferative and secretory endometrium. An approximately 35-kDa binding protein was identified when 125I-IGF-1 was cross-linked to cytosol proteins. Secretory endometrium had significantly more IGF-1-BP when compared to proliferative endometrium. The specificity of the cross-linking process was evaluated by the addition of 100 nM unlabeled IGF-1 or insulin. Unlabeled IGF-1 totally abolished the radioactivity from the band, indicating specific binding. Insulin had no apparent effect on the intensity of the labeled band. These results suggest that IGF-BP could modulate the action of IGF-1 throughout the menstrual cycle. It would be interesting to study this binding protein in other pathologic conditions of the endometrium such as adenocarcinomas and hyperplasia.
Resumo:
Renal involvement in visceral leishmaniasis (VL) is very frequent. The renal lesions of humans and dogs are similar but their pathogenesis has not been clearly elucidated. There is growing evidence that the cellular immune response is involved in the pathogenesis of immunologically mediated glomerulonephritis. Since T cells could participate in the pathogenesis of nephropathy, in the present study we investigated the possible involvement of CD4+ and CD8+ T cells in the nephropathy of canine VL. Six dogs naturally infected with Leishmania (Leishmania) chagasi from the endemic area in the Northeast of Brazil, the town of Teresina in the State of Piauí, were studied. An expressive inflammatory infiltrate of CD4+ T cells both in glomeruli and in interstitium was present in 4 animals and absent in 2. CD8+ T cells were detected only in one animal. CD4+ T cells alone were observed in 3 animals; when CD8+ T cells were present CD4+ T cells were also present. CD4+ T cells were observed in cases of focal segmental glomerulosclerosis, diffuse membranoproliferative glomerulonephritis, diffuse mesangial proliferative glomerulonephritis and crescentic glomerulonephritis. CD8+ T cells were present only in a case of crescentic glomerulonephritis. Leishmania antigen was detected in glomeruli and in interstitial inflammatory infiltrate in 4 animals and immunoglobulins were observed in 4 dogs. In this study we observed that T cells, in addition to immunoglobulins, are present in the renal lesion of canine VL. Further studies are in progress addressing the immunopathogenic mechanisms involving the participation of immunoglobulins and T cells in canine VL nephropathy.
Resumo:
In the present study, we examined the relationship between cell phenotype and cell survival of three human non-small cell lung carcinoma cell lines (A549, NCI-H596 and NCI-H520). Cells in exponential growth at various densities were incubated for 24 h at 37ºC in a 5% CO2 humidified atmosphere and then exposed to UV radiation for 1 min (256 nm, 40 W, source-to-target distance 100 cm). After two days the surviving cells were quantified by sulforhodamine ß staining and DNA fragmentation assay. The differences in UV sensitivity at 60 x 10³ cells/cm² among the cell lines were not related to the proliferative state of the cells but to the extent of intercellular contact. In contrast to A549 and NCI-H596, irradiated NCI-H520 cells presented lower DNA fragmentation and an aggregated cell culture phenotype even prior to confluence, suggesting that a contact-effect mechanism provides further protection against UV radiation.
Resumo:
In a previous study we demonstrated that the incidence of fibroblast colony-forming units (CFU-F) was very low in bone marrow primary cultures from the majority of untreated advanced non-small lung cancer patients (LCP) compared to normal controls (NC). For this reason, we studied the ability of bone marrow stromal cells to achieve confluence in primary cultures and their proliferative capacity following four continuous subcultures in consecutive untreated LCP and NC. We also evaluated the production of interleukin-1ß (IL-1ß) and prostaglandin E2 (PGE2) by pure fibroblasts. Bone marrow was obtained from 20 LCP and 20 NC. A CFU-F assay was used to investigate the proliferative and confluence capacity. Levels of IL-1ß and PGE2 in conditioned medium (CM) of pure fibroblast cultures were measured with an ELISA kit and RIA kit, respectively. Only fibroblasts from 6/13 (46%) LCP confluent primary cultures had the capacity to proliferate following four subcultures (NC = 100%). Levels of spontaneously released IL-1ß were below 10 pg/ml in the CM of LCP, while NC had a mean value of 1,217 ± 74 pg/ml. In contrast, levels of PGE2 in these CM of LCP were higher (77.5 ± 23.6 pg/ml) compared to NC (18.5 ± 0.9 pg/ml). In conclusion, bone marrow fibroblasts from LCP presented a defective proliferative and confluence capacity, and this deficiency may be associated with the alteration of IL-1ß and PGE2 production.
Resumo:
Adult Ascaris suum body extract (Asc) prepared from male and female worms (with stored eggs) down-regulates the specific immune response of DBA/2 mice to ovalbumin (OA) and preferentially stimulates a Th2 response to its own components, which is responsible for the suppression of the OA-specific Th1 response. Here, we investigated the participation of soluble extracts prepared from male or female worms or from eggs (E-Asc) in these immunological events. Extracts from either sex (1 mg/animal) or E-Asc (0.35 or 1 mg protein/animal) suppressed the delayed-type hypersensitivity (DTH) reaction (60-85%), proliferative response (50-70%), IL-2 and IFN-gamma secretion (below detection threshold) and IgG1 antibody production (70-90%) of DBA/2 mice to OA. A dose of 0.1 mg E-Asc/animal did not change DTH or proliferation, but was as effective as 0.35 mg in suppressing IL-2 and IFN-gamma, and OA-specific IgG1 antibodies. Lymph node cells from DBA/2 mice injected with Asc (1 mg/animal) or a high dose of E-Asc (1 mg protein/animal) secreted IL-4 upon in vitro stimulation with concanavalin A. As previously demonstrated for Asc, the cytokine profile obtained with the E-Asc was dose dependent and changed towards Th1 when a low dose (0.1 mg protein/animal) was used. Taken together, these results suggest that adult worms of either sex and eggs induce the same type of T cell response and share similar immunosuppressive properties.
Resumo:
Previous studies have shown that exogenously generated nitric oxide (NO) inhibits smooth muscle cell proliferation. In the present study, we stimulated rabbit vascular smooth muscle cells (RVSMC) with E. coli lipopolysaccharide (LPS), a known inducer of NO synthase transcription, and established a connection between endogenous NO, phosphorylation/dephosphorylation-mediated signaling pathways, and DNA synthesis. Non-confluent RVSMC were cultured with 0, 5, 10, or 100 ng/ml of the endotoxin. NO release was increased by 86.6% (maximum effect) in low-density cell cultures stimulated with 10 ng/ml LPS as compared to non-stimulated controls. Conversely, LPS (5 to 100 ng/ml) did not lead to enhanced NO production in multilayered (high density) RVSMC. DNA synthesis measured by thymidine incorporation showed that LPS was mitogenic only to non-confluent RVSMC; furthermore, the effect was prevented statistically by aminoguanidine (AG), a potent inhibitor of the inducible NO synthase, and oxyhemoglobin, an NO scavenger. Finally, there was a cell density-dependent LPS effect on protein tyrosine phosphatase (PTP) and ERK1/ERK2 mitogen-activated protein (MAP) kinase activities. Short-term transient stimulation of ERK1/ERK2 MAP kinases was maximal at 12 min in non-confluent RVSMC and was prevented by preincubation with AG, whereas PTP activities were inhibited in these cells after 24-h LPS stimulation. Conversely, no significant LPS-mediated changes in kinase or phosphatase activities were observed in high-density cells. LPS-induced NO generation by RVSMC may switch on a cell density-dependent proliferative signaling cascade, which involves the participation of PTP and the ERK1/ERK2 MAP kinases.
Resumo:
A lectin from cat liver has been identified and purified by affinity chromatography on asialofetuin-Sepharose. One hundred micrograms of lectin was obtained from one cat liver with a purification factor of 1561. The lectin agglutinates trypsin-treated rabbit and cow erythrocytes. Hemagglutination was inhibited only by saccharides containing ß-galactosyl residues, of which the 1-amine-1-deoxy-ß-D-galactose was the most potent one by inhibiting hemagglutination at a concentration of 12.5 mM, followed by melibiose, trehalose and galactose. The lectin has a subunit molecular mass of 14.4 kDa determined by SDS-PAGE under reducing conditions and a pI of 4.85. Compared with the composition of lectins from calf heart and porcine heart, cat liver lectin contains approximately the same amount of cysteine, half the amount of glycine, twice as much arginine and threonine, and three times the amounts of tyrosine and methionine. Cat liver lectin contains four cysteine residues per subunit, all of them in the reduced form. Their lack of reactivity towards thiol-reactive supports suggests they are not exposed on the lectin surface. The protein apparently has a blocked N-terminus. The purified lectin was stable for up to 20 months stored at +4ºC in buffer supplemented with 4 mM ß-mercaptoethanol. Results indicated that this lectin belongs to the family of soluble ß-galactoside-binding lectins, also known as galectins, which are expressed in a wide range of vertebrate tissues.
Resumo:
The analysis of chromosomal abnormalities is important for the study of hematological neoplastic disorders since it facilitates classification of the disease. The ability to perform chromosome analysis of cryopreserved malignant marrow or peripheral blast cells is important for retrospective studies. In the present study, we compared the karyotype of fresh bone marrow cells (20 metaphases) to that of cells stored with a simplified cryopreservation method, evaluated the effect of the use of granulocyte-macrophage colony-stimulating factor (GM-CSF) as an in vitro mitotic index stimulator, and compared the cell viability and chromosome morphology of fresh and cryopreserved cells whenever possible (sufficient metaphases for analysis). Twenty-five bone marrow samples from 24 patients with hematological disorders such as acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, chronic myeloid leukemia, megaloblastic anemia and lymphoma (8, 3, 3, 8, 1, and 1 patients, respectively) were selected at diagnosis, at relapse or during routine follow-up and one sample was obtained from a bone marrow donor after informed consent. Average cell viability before and after freezing was 98.8 and 78.5%, respectively (P < 0.05). Cytogenetic analysis was successful in 76% of fresh cell cultures, as opposed to 52% of cryopreserved samples (P < 0.05). GM-CSF had no proliferative effect before or after freezing. The morphological aspects of the chromosomes in fresh and cryopreserved cells were subjectively the same. The present study shows that cytogenetic analysis of cryopreserved bone marrow cells can be a reliable alternative when fresh cell analysis cannot be done, notwithstanding the reduced viability and lower percent of successful analysis that are associated with freezing.
Resumo:
Cells usually lose adhesion and increase proliferation and migration during malignant transformation. Here, we studied how proliferation can affect the other two characteristics, which ultimately lead to invasion and metastasis. We determined the expression of ß1 integrins, as well as adhesion and migration towards laminin-1, fibronectin, collagens type I and type IV presented by LISP-1 colorectal cancer cells exposed to 2.5% dimethyl sulfoxide (DMSO), an agent capable of decreasing proliferation in this poorly differentiated colorectal cell line. Untreated cells (control), as shown by flow cytometry and monoclonal antibodies, expressed alpha2 (63.8 ± 11.3% positive cells), alpha3 (93.3 ± 7.0%), alpha5 (50.4 ± 12.0%) and alpha6 (34.1 ± 4.9%) integrins but not alpha1, alpha4, alphav or ß4. Cells adhered well to laminin-1 (73.4 ± 6.0%) and fibronectin (40.0 ± 2.0%) substrates but very little to collagens. By using blocking monoclonal antibodies, we showed that alpha2, alpha3 and alpha6 mediated laminin-1 adhesion, but neither alpha3 nor alpha5 contributed to fibronectin adherence. DMSO arrested cells at G0/G1 (control: 55.0 ± 2.4% vs DMSO: 70.7 ± 2.5%) while simultaneously reducing alpha5 (24.2 ± 19%) and alpha6 (14.3 ± 10.8%) expression as well as c-myc mRNA (7-fold), the latter shown by Northern blotting. Although the adhesion rate did not change after exposure to DMSO, alpha3 and alpha5 played a major role in laminin-1 and fibronectin adhesion, respectively. Migration towards laminin-1, which was clearly increased upon exposure to DMSO (control: 6 ± 2 cells vs DMSO: 64 ± 6 cells), was blocked by an antibody against alpha6. We conclude that the effects of DMSO on LISP-1 proliferation were accompanied by concurrent changes in the expression and function of integrins, consequently modulating adhesion/migration, and revealing a complex interplay between function/expression and the proliferative state of cells.