136 resultados para Plant-soil feedback


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reasons why we care about soil fauna are related to their intrinsic, utilitarian and functional values. The intrinsic values embrace aesthetic or moral reasons for conserving below-ground biodiversity. Unfortunately, the protection of soil invertebrates has rarely been a criterion for avoiding changes in land use and management. Utilitarian, or direct use values, have been investigated more extensively for fungi, bacteria and marine invertebrates than for soil fauna. However, some traditional remedies, novel enzymes and pharmaceutical compounds have been derived from earthworms, termites and other groups, and gut symbionts may provide microbial strains with interesting properties for biotechnology. The functional importance of soil invertebrates in ecosystem processes has been a major focus of research in recent decades. It is suggested herein that it is rarely possible to identify the role of soil invertebrates as rate determinants of soil processes at plot and ecosystem scales of hectares and above because other biophysical controls override their effects. There are situations, however, where the activities of functional groups of soil animals, even of species, are synchronised in space or time by plant events, resource inputs, seasonality or other perturbations to the system, and their emergent effects are detectable as higher order controls.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of grafting (onto Solanum torvum Sw.) on plant growth, yield and fruit quality of the Pala and Faselis eggplant (Solanum melongena L.) cultivars, grown in a soil infested with Verticillium dahliae Kleb. and Meloidogyne incognita, or in noninfested soil. Soil infestation decreased yield, plant height, final above-ground biomass, and also reduced fruit mean weight and shoot dry weight depending on cultivar or grafting. Grafting decreased fruit oxalic acid and the soluble solid contents, and increased mean fruit weight, depending on cultivar and soil infestation. Grafting also reduced the negative effects of the pathogens on disease index, plant height and shoot dry weight. Cultivar Pala was more vigorous than Faselis, and S. torvum was a vigorous rootstock. The combination of a vigorous rootstock with a weak cultivar (Faselis) is more profitable than that of a vigorous rootstock and a vigorous cultivar (Pala). Using S. torvum as a rootstock for cultivar Faselis, grown in soil infested with the pathogens, is most likely to be useful in conventional and low-input sustainable horticulture, since grafting increases protection against the pathogens, and reduces the losses in quality and yield.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to assess the effect of successive selection cycles on leaf plasticity of 'Saracura' maize BRS-4154 under periodical flooding in field conditions. Soil flooding started at the six-leaf stage with the application of a 20-cm depth water layer three times a week. At flowering, samples of leaves were collected and fixed. Paradermic and transverse sections were observed under photonic microscope. Several changes were observed throughout the selection cycles, such as modifications in the number and size of the stomata, higher amount of vascular bundles and the resulting decrease of the distance between them, smaller diameter of the metaxylem, decrease of cuticle and epidermis thickness, decrease of number and size of bulliform cells, increase of phloem thickness, smaller sclerenchyma area. Therefore, the successive selection cycles of 'Saracura' maize resulted in changes in the leaf anatomy, which might be favorable to the plant's tolerance to the intermittent flooding of the soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of biochar made from Eucalyptus on soil fertility, and on the yield and development of upland rice. The experiment was performed during two years in a randomized block design with four replicates, in a sandy loam Dystric Plinthosol. Four doses of NPK 05-25-15, annually distributed in stripes (0, 100, 200 and 300 kg ha-1), and four doses of biochar (0, 8, 16 and 32 Mg ha-1), applied once in the first year - alone or with NPK - were evaluated. In the first year, biochar positively affected soil fertility [total organic carbon (TOC), Ca, P, Al, H+Al, and pH], at 0-10 cm soil depth, and it was the only factor with significant effect on yield. In the second year, the effect of biochar diminished or was overcome by the fertilizer. TOC moved down in the soil profile to the 0-20 cm depth, influencing K availability in this layer. In the second year, there was a significant interaction between biochar and the fertilizer on plant growth and biomass dry matter accumulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a lack of information about fertilization of pineapple grown in the State of São Paulo, Brazil. So a field experiment with pineapple 'Smooth Cayenne' was carried out to study the effects of NPK rates on yield and fruit quality. The trial was located on an Alfisol in the central part of the State of São Paulo (Agudos county). The experimental design was an incomplete NPK factorial, with 32 treatments set up in two blocks. The P was applied only at planting, at the rates of 0; 80; 160 and 320 kg/ha of P2 0(5), as superphosphate. The N and K2O rates were 0; 175; 350, and 700 kg/ha, applied as urea and potassium chloride, respectively, divided in four applications during the growth period. Response functions were adjusted to yield or to fruit characteristics in order to estimate the nutrient rates required to reach maximum values. The results showed quadratic effects of N and K on yield and a maximum of 72 t/ha of fresh fruit was attained with rates of 498 and 394 kg/ha, respectively of N and K2O. In order to reach the maximum fruit size, and to improve the percentage of first class fruit (mass greater than 2.6 kg), were necessary rates of N and K respectively 11 and 43 % higher than those for maximum yield. No effect of P rates was observed on pineapple plant growth, despite the low availability of this nutrient in the soil. The effect of N rates was negative on total soluble solids and total acidity while the opposite occurred with K, which increased also the content of vitamin C. High yield and fruit size were closely related to N and K concentrations in the leaves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current high competition on Citrus industry demands from growers new management technologies for superior efficiency and sustainability. In this context, precision agriculture (PA) has developed techniques based on yield mapping and management systems that recognize field spatial variability, which contribute to increase profitability of commercial crops. Because spatial variability is often not perceived the orange orchards are still managed as uniform and adoption of PA technology on citrus farms is low. Thus, the objective of the present study was to characterize the spatial variability of three factors: fruit yield, soil fertility and occurrence of plant gaps caused by either citrus blight or huanglongbing (HLB) in a commercial Valencia orchard in Brotas, São Paulo State, Brazil. Data from volume, geographic coordinates and representative area of the bags used on harvest were recorded to generate yield points that were then interpolated to produce the yield map. Soil chemical characteristics were studied by analyzing samples collected along planting rows and inter-rows in 24 points distributed in the field. A map of density of tree gaps was produced by georeferencing individual gaps and later by counting the number of gaps within 500 m² cells. Data were submitted to statistical and geostatistical analyses. A t test was used to compare means of soil chemical characteristics between sampling regions. High variation on yield and density of tree gaps was observed from the maps. It was also demonstrated overlapping regions of high density of plant absence and low fruit yield. Soil fertility varied depending on the sampling region in the orchard. The spatial variability found on yield, soil fertility and on disease occurrence demonstrated the importance to adopt site specific nutrient management and disease control as tools to guarantee efficiency of fruit production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mulching has become an important technique for land cover, but there are some technical procedures which should be adjusted for these new modified conditions to establish optimum total water depth. It is also important to observe the soil-water relations as soil water distribution and wetted volume dimensions. The objective of the present study was to estimate melon evapotranspiration under mulching in a protected environment and to verify the water spatial distribution around the melon root system in two soil classes. Mulching provided 27 mm water saving by reducing water evaporation. In terms of volume each plant received, on average, the amount of 175.2 L of water in 84 days of cultivation without mulching, while when was used mulching the water requirement was 160.2 L per plant. The use of mulching reduced the soil moisture variability throughout the crop cycle and allowed a greater distribution of soil water that was more intense in the clay soil. The clayey soil provided on average 43 mm more water depth retention in 0.50 m soil deep relative to the sandy loam soil, and reduced 5.6 mm the crop cycle soil moisture variation compared to sandy loam soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Botrytis blight caused by Botrytis cinerea is an important disease of rose (Rosa hybrida) grown in greenhouses in Brazil. As little is known regarding the disease epidemiology under greenhouse conditions, pathogen survival in crop debris and as sclerotia was evaluated. Polyethylene bags with petals, leaves, or stem sections artificially infected with B. cinerea were mixed with crop debris in rose beds, in a commercial plastic greenhouse. High percentage of plant parts with sporulation was detected until 60 days, then sporulation decreased on petals after 120 days, and sharply decreased on stems or leaves after 90 days. Sporulation on petals continued for 360 days, but was not observed on stems after 150 days or leaves after 240 days. Although the fungus survived longer on petals, stems and leaves are also important inoculum sources because high amounts of both are deposited on beds during cultivation. Survival of sclerotia produced on PDA was also quantified. Sclerotia germination was greater than 75% in the initial 210 days and 50% until 360 days. Sclerotia weight gradually declined but they remained viable for 360 days. Sclerotia were produced on the buried petals, mainly after 90 days of burial, but not on leaves or stems. Germination of these sclerotia gradually decreased after 120 days, but lasted until 360 days. Higher weight loss and lower viability were observed on sclerotia produced on petals than on sclerotia produced in vitro

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diseases induced by Rhizoctonia solani, like damping-off and root and stem rot on soybean (Glycine max), are a serious problem around the world. The addition of some organic material to soil is an alternative control for these diseases. In this study, benzaldehyde and dried powders of kudzu (Pueraria lobata), velvetbean or mucuna (Mucuna deeringiana), and pine bark (Pinus spp.) were used in an attempt to improve soybean plant growth and to reduce the disease R. solani (AG-4) causes on soybean. Benzaldehyde (0.1-0.4 mL/kg of soil) and velvetbean (25-100 g/kg) significantly (P < 0.05) reduced mycelial growth of R. solani in laboratory tests. In greenhouse experiments, the percentage of non-diseased plants was higher in treatments with pine bark and velvetbean (50-100 g/kg). In soil treated with kudzu (r²=0.91) or velvetbean (r²=0.94), increasing rates of these amendments tended to increase plant fresh mass. In microplot field conditions, soil amended with velvetbean (r²=0.85) and pine-bark (r²=0.61) significantly reduced disease on soybean. Numbers of Bacillus megaterium (r²=0.87) and Trichoderma hamatum (r²=0.92) and hydrolysis of fluorescein diacetate (r²=0.91) were higher in soil amended with increasing rates of velvetbean, indicating an increase in microbial activity. From this study it is concluded that dried powders of velvetbean and pine bark added to soil can reduce Rhizoctonia-induced disease on soybean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of organic matter that improves the physical, chemical and biological soil properties has been studied as an inducer of suppressiveness to soilborne plant pathogens. The objective of this work was to evaluate the effect of different sources and concentrations of organic matter on tomato bacterial wilt control. Two commercially available organic composts and freshly cut aerial parts of pigeon pea (Cajanus cajan) and crotalaria (Crotalaria juncea) were incorporated, in concentrations of 10, 20 and 30 % (v/v), into soil infested with Ralstonia solanacearum. The soil with the fresh organic matter of pigeon pea and crotalaria was incubated for 30 and 60 days before planting. Tomato seedlings of cv. Santa Clara were transplanted into polyethylene bags with 3 kg of the planting substrate (infested soil + organic matter). The wilting symptoms and percentage of flowering plants were evaluated for 45 days. All evaluated concentrations with incorporation and incubation for 30 days of aerial parts of pigeon pea and crotalaria controlled 100% tomato bacterial wilt. With 60 days of incubation, only the 10 % concentration of pigeon pea and crotalaria did not control the disease. These results suggest that soil incorporation of fresh aerial parts of pigeon pea and crotalaria is an effective method for bacterial wilt control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic matter plays a fundamental role in the antagonistic activity of microorganisms against phytonematode populations on the soil. In this study, the compatibility between the fungus Pochonia chlamydosporia (Pc-12) and the rhizobacterium Gracilibacillus dipsosauri (MIC 14) was evaluated in vitro, as well as the effect of the fungus at the concentration of 5,000 chlamydospores per gram of soil, rhizobacterium at 4.65 x 10(9) cells/g of soil, and the soil conditioner Ribumin® at 10 g/pot, either alone or in combination, against Meloidogyne javanica population in tomato plants (3,000 eggs/pot). A suspension of water or Ribumin® alone was applied on the soil as negative control, while a suspension of nematode eggs was applied as positive control. The reduction in the number of galls in roots per plant was 48 and 41% for the treatments Ribumin + MIC 14 + Pc-12 and MIC 14 + Pc-12, respectively. Regarding to the number of eggs per plant, MIC 14 and Pc-12 + Ribumin led to a reduction by 26 and 21%, respectively, compared to the control treatment. Interaction between the nematophagous fungus and the rhizobacterium was positive for the nematode control, even though G. dipsosauri inhibited P. chlamydosporia growth by up to 30% in in vitro tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In field experiments, the density of Macrophomina phaseolina microsclerotia in root tissues of naturally colonized soybean cultivars was quantified. The density of free sclerotia on the soil was determined for plots of crop rotation (soybean-corn) and soybean monoculture soon after soybean harvest. M. phaseolina natural infection was also determined for the roots of weeds grown in the experimental area. To verify the ability of M. phaseolina to colonize dead substrates, senesced stem segments from the main plant species representing the agricultural system of southern Brazil were exposed on naturally infested soil for 30 and 60 days. To quantify the sclerotia, the methodology of Cloud and Rupe (1991) and Mengistu et al. (2007) was employed. Sclerotium density, assessed based on colony forming units (CFU), ranged from 156 to 1,108/g root tissue. Sclerotium longevity, also assessed according to CFU, was 157 days for the rotation and 163 days for the monoculture system. M. phaseolina did not colonize saprophytically any dead stem segment of Avena strigosa,Avena sativa,Hordeum vulgare,Brassica napus,Gossypium hirsutum,Secale cereale,Helianthus annus,Triticosecalerimpaui, and Triticum aestivum. Mp was isolated from infected root tissues of Amaranthus viridis,Bidens pilosa,Cardiospermum halicacabum,Euphorbia heterophylla,Ipomoea sp., and Richardia brasiliensis. The survival mechanisms of M. phaseolina studied in this paper met the microsclerotium longevity in soybean root tissues, free on the soil, as well as asymptomatic colonization of weeds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cordia curassavica (Jacq.) Roem. & Schult. (Boraginaceae), also referred to as Cordia verbenacea DC, has been traditionally used for medicinal purposes. This study was driven to verify the behavior of the species in similar conditions to its natural environment, such as high light intensity and sandbank soil, and in conditions of low light intensity and fertilized substratum (dystroferric red nitosoil plus earthworm humus). The growth of the plant, the income of leaf crude extracts and, in the alcoholic extract, the number of substances found in thin layer cromatography and the toxicity of the substratum was observed. The results indicated that the growth of the root biomass, stem and leaves in discharge or lower light intensity was similar, but smaller in sandbank soil than in fertilized soil. The relative income of extracts in ether of petroleum and alcohol was larger in high light intensity and fertilized substratum. The light intensity and the substratum type didn't affect the number of substances detected in the alcoholic extract or the toxicity of this extract. Stains corresponding to the rosmarinic acid were only evidenced in some samples of the alcoholic extract, not allowing the verification of the effect of the treatments about its production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of saline water and the reuse of drainage water for irrigation depend on long-term strategies that ensure the sustainability of socio-economic and environmental impacts of agricultural systems. In this study, it was evaluated the effects of irrigation with saline water in the dry season and fresh water in the rainy season on the soil salt accumulation yield of maize and cowpea, in a crop rotation system. The experiment was conducted in the field, using a randomized complete block design, with five replications. The first crop was installed during the dry season of 2007, with maize irrigated with water of different salinities (0.8, 2.2, 3.6 and 5.0 dS m-1). The maize plants were harvested at 90 days after sowing (DAS), and vegetative growth, dry mass of 1000 seeds and grain yield were evaluated. The same plots were utilized for the cultivation of cowpea, during the rainy season of 2008. At the end of the crop, cycle plants of this species were harvested, being evaluated the vegetative growth and plant yield. Soil samples were collected before and after maize and cowpea cultivation. The salinity of irrigation water above 2.2 dS m-1 reduced the yield of maize during the dry season. The high total rainfall during the rainy season resulted in leaching of salts accumulated during cultivation in the dry season, and eliminated the possible negative effects of salinity on cowpea plants. However, this crop showed atypical behavior with a significant proportion of vegetative mass and low pod production, which reduced the efficiency of this strategy of crop rotation under the conditions of this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Cerrado soils under grazing, changes occur in physical attributes, such as increased density, decreasing on the size of water stable aggregates, and macroporosity reduction. Thus, the aim of this study was to study the effect of compaction on the establishment of two forages. It was adopted a completely randomized design with three replications, in 2 x 4 factorial design, and two forages (Xaraés grass and Marandu grass), and four levels of compaction (soil densities of 1.0, 1.2, 1.4, and 1.6 Mg m-3). The following variables were evaluated 48 days after sowing: tiller population, plant height, dry matter production of shoots and components, leaf and stem, as well as the root dry mass. The stem dry mass decreased with soil density in a similar manner for both forages. It was observed that the leaf dry mass and shoots dry mass of Xaraés grass remained constant in the levels of soil compaction, not adjusting to any regression model. The establishment of Xaraés grass has not been negatively affected by compaction, which may be suitable for situations where there may be layers that restrict the growth of different forages.