175 resultados para Photochemical apparatus
Resumo:
The oxidation of arsenic (As(III) to As(V)) in water samples was performed by heterogeneous photocatalysis using a TiO2 film immobilized inside a photochemical reactor. After oxidation, As(V) was removed from the water samples by coprecipitation with ferric sulfate. The final conditions of oxidation and arsenic removal (TiO2 film prepared with a suspension: 10% (w/v); pH: 7.0; oxidation time: 30 min and Fe3+ concentration: 50 mg L-1) were applied in natural water samples which were supplemented with 1.0 mg L-1 of As(III) to verify the influence of the matrix. After treatment, more than 99% of arsenic was removed from the water.
Resumo:
The seasonal behavior of NO2 concentration shows a maximum occurring during sugarcane crop and this suggests that the biomass burning is significant source of emission at this time of the year. Along the day, the variation of the NO2 showed a decrease during the increased sunlight and an increase thereafter, caused by occurrence of photochemical reactions. Measurements of NO2 were done inside of residential and industrial kitchens and also inside of a parking garage located in the underground of a supermarket building. The indoor concentrations of NO2 were significantly higher than the concentrations of the external atmosphere and it shows the importance of the sources of internal emissions.
Resumo:
The aim of this work was the development of a dissolution method for benznidazole (BNZ) tablets. Three different types of dissolution media, two stirring speeds and apparatus 2 (paddle) were used. The accomplishment of the drug dissolution profiles was compared through the dissolution efficiency. The assay was performed by spectrophotometry at 324 nm. The better conditions were: sodium chloride\hydrochloride acid buffer pH 1.2 with stirring speed of 75 rpm, volume of 900 mL and paddle as apparatus. Ahead of the results it can be concluded that the method developed consists in an efficient alternative for assays of dissolution for benznidazole tablets.
Resumo:
The volatile components of the stem bark of Capsicodendron dinisii were obtained by hydrodistillation using a modified Clevenger-type apparatus. The chemical compounds were identified using the arithmetic index and confirmed by GC-MS. Twenty-three compounds suggest the identified representing almost 90% of the total oil composition. Limonene (68.5%) was the major compound found. The stereochemistry of limonene was determined and was found to be represented by (+)-limonene (94%) and (-)-limonene (6%). The presence of drimenol (0.7%), a drimane sesquiterpenoid, confirmed the volatile components characteristics of the Canellaceae family.
Resumo:
A solid-phase in-line extraction system for water samples containing low levels of emerging contaminants is described. The system was specially developed for large volume samples (up to 4 L) using commercial solid-phase extraction (SPE) cartridges. Four sets containing PTFE-made connectors, brass adapters and ball valves were used to fit SPE cartridges and sample bottles to a 4-port manifold attached to a 20 L carboy. A lab-made vacuum device was connected to the manifold cap. The apparatus is robust and less expensive than the typical available system. Its also provides less experimental handling, avoiding cross contamination and sample losses.
Resumo:
This work describes the development and validation of a dissolution test for 50 mg losartan potassium capsules using HPLC and UV spectrophotometry. A 2(4) full factorial design was carried out to optimize dissolution conditions and potassium phosphate buffer, pH 6.8 as dissolution medium, basket as apparatus at the stirring speed of 50 rpm and time of 30 min were considered adequate. Both dissolution procedure and analytical methods were validated and a statistical analysis showed that there are no significant differences between HPLC and spectrophotometry. Since there is no official monograph, this dissolution test could be applied for quality control routine.
Resumo:
This work aimed the development and validation of a new dissolution test for ornidazole coated tablets. The dissolution conditions were determined after testing Sink conditions, dissolution medium, apparatus, stirring speed, 24 h stability and medium filtration influence. The best conditions were paddle at a stirring speed of 75 rpm and 900 mL of 0.1 M HCl. A new HPLC quantification method was developed and validated. The dissolution test and quantification method showed to be adequate for their purposes and could be applied for quality control of ornidazole coated tablets, since there is no official monograph.
Resumo:
A dissolution test for in vitro evaluation of tablet dosage forms containing 10 mg of rupatadine was developed and validated by RP-LC. A discriminatory dissolution method was established using apparatus paddle at a stirring rate of 50 rpm with 900 mL of deaerated 0.01 M hydrochloric acid. The proposed method was validated yielding acceptable results for the parameters evaluated, and was applied for the quality control analysis of rupatadine tablets, and to evaluate the formulation during an accelerated stability study. Moreover, quantitative analyses were also performed, to compare the applicability of the RP-LC and the LC-MS/MS methods.
Resumo:
This article describes the use of a projection spectrograph based on an overhead projector for use in classroom demonstrations on light polarization and optical activity. A simple adaptation on a previously developed apparatus allows illustrating several aspects of optical activity, such as circular and linear birefringence, including their wavelength dependence. Specifically, we use the projection spectrograph to demonstrate the optical activity of an aqueous solution of sugar (circular birefringence), of a quartz plate and of an overhead projector transparence film (linear birefringence). A historical survey about the optical activity discovery and the main principles involved is also presented.
Resumo:
In this work the preparation and characterization of a supported catalyst intended for degradation of reactive dyes by Fenton-like processes is described. The photocatalyst was prepared by immobilization of Fe3+ into the molecular sieve (4A type) surface and characterized by x-ray diffractometry and infrared, Mössbauer and EPR spectroscopy. The solid containing 0.94% (w/w) of ferric ions was used in degradation studies of aqueous reactive-dyes samples with really promissory results. Generally, Vis-assisted photochemical processes leads to almost total decolorization of all tested dyes at reaction times lower than 30 min. It was also observed that the iron-molecular sieve matrix can be reused.
Resumo:
This work describes the establishment of dissolution test conditions for 75 mg cinnarizine capsules using a multivariate approach. A 2³ full factorial design was carried out to achieve the best conditions and HCl 0.1 mol L-1 as dissolution medium, basket as apparatus at 100 rpm and collect time at 30 min were considered adequate. The quantification was carried out by spectrophotometry at 251 nm. Both dissolution procedure and analytical method were validated and all parameters were within the acceptable limits. Since there is no official monograph for this pharmaceutical product, this dissolution test could be applied for quality control routine.
Resumo:
This work describes the development and validation of a dissolution test for 60 mg of diltiazem hydrochloride in immediate release capsules. The best dissolution in vitro profile was achieved using potassium phosphate buffer at pH 6.8 as the dissolution medium and paddle as the apparatus at 50 rpm. The drug concentrations in the dissolution media were determined by UV spectrophotometry and HPLC and a statistical analysis revealed that there were significant differences between HPLC and spectrophotometry. This study illustrates the importance of an official method for the dissolution test, since there is no official monograph for diltiazem hydrochloride in capsules.
Resumo:
This work shows routes to recover some elements from their laboratory wastes and broken apparatus (thermometers and densimeters). Most elements chosen present a chemical behavior in aqueous solution which is not currently studied in the ordinary experimental classes. The routes were based on the previous knowledge of the qualitative composition of the wastes treated. Wastes containing chromium were the most difficult to treat. The elements were recovered in good yields and can be reused in new experiments. This work was a very good experience in chemistry for students and shows the need of managing wastes for a better environment.
Resumo:
The commercial sugar cane spits redistillation decreased up to 92,5% their ethyl carbamate (EC) original content. Quantitative analysis of EC in 15 samples of sugar cane spirit (alembic and column), fresh distilled and collected in situ demonstrated that the urethane is formed mostly after distillation. The average time to achieve the complete EC formation is independent of the diffuse light presence and of the distillation apparatus used. The k obs for urethane formation at 25 ºC was calculate as (3,3 ± 0,5) x 10-5/s and the activation parameters are: ΔH 34 kcal/mol; ΔS - 69 cal/mol K; and ΔG 54 kcal/mol.
Resumo:
In this work is presented a versatile system for X-ray excited optical luminescence (XEOL) measurements. The apparatus was assembled from a sample holder connected to an optical fiber responsibly for the acquisition of the scintillation signal. The spectrum is registered with a CCD coupled in a spectrograph provided with diffraction gratings. The system performance was analyzed by exciting GdAlO3:Eu3+ 3.0 at.% with X-rays from a diffractometer and measuring the emission spectra. The system can be used to obtain precise and reliable spectroscopic properties of samples with various conformations without the loss of the required safety when dealing with ionizing radiations.