109 resultados para Phosphate solibilizing bacteria
Resumo:
Uruguayan artisan cheese is elaborated with raw milk and non-commercial starters. The associated native microbiota may include lactic acid bacteria and also potentially pathogenic bacteria. Lactic acid bacteria were isolated from artisan cheese, raw milk, and non-commercial starter cultures, and their potential bacteriocin production was assessed. A culture collection of 509 isolates was obtained, and five isolates were bacteriocin-producers and were identified as Enterococcus durans,Lactobacillus casei, and Lactococcus lactis. No evidence of potential virulence factors were found in E. durans strains. These are promising results in terms of using these native strains for cheese manufacture and to obtain safe products.
Resumo:
Akara is one of Brazil's national treasures prepared from cowpea (Vigna unguiculata L.Walp), grated onions and salt and deep-fried in crude palm oil. The results of this study on akara preparation methods showed that, in general, cowpeas were soaked for up 3 hours at room temperature, and the seed coats were then removed. The akara makers preferred the olho de pombo cultivar, because of its cream hue, or the macassar cultivar because it produces a crispier paste. The seeds purchased from street markets had lower ranges of InsP6, InsP5, and InsP4 (1.03-7.62 ∝mol.g- 1; 0.14-1.31 ∝mol.g- 1; and 0.0-0.10 ∝mol.g- 1, respectively) than both the paste and akara (6.72-19.24 ∝mol.g- 1; 1.29-4.57 ∝mol.g- 1; 0.0-0.76 ∝mol.g- 1; 3.31-13.71 ∝mol.g- 1; 0.0-4.48 ∝mol.g- 1; and 0.0-1.32 ∝mol.g- 1). These results suggest that other beans or cowpea varieties have been used in the preparation of akara and that the phytate levels do not affect its nutritional quality.
Resumo:
Biofilms in milk cooling tanks compromise product quality even on farms. Due to the lack of studies of this topic, this study evaluated the microbiological conditions of raw milk cooling tanks on farms and characterized the microorganisms isolated from these tanks. Samples were wiped off with sterile swabs from seven milk cooling tanks in three different points in each tank. Mesophiles and psychrotrophic counts were performed in all samples. The isolation of Pseudomonas spp., Bacillus cereus and atypical colonies formed on selective media were also performed, totalizing 297 isolates. All isolates were tested for protease and lipase production and biofilm formation. Of the total isolates, 62.9% produced protease, 55.9% produced lipase, and 50.2% produced biofilm. The most widespread genus inside the milk cooling tank was Pseudomonas since it was not possible to associate this contamination with a single sampling point in the equipment. High counts of microorganisms were found in some cooling tanks, indicating poor cleaning of the equipment and providing strong evidences of microbial biofilm presence. Moreover, it is worth mentioning the milk potential contamination with both microbial cells and their degrading enzymes, which compromises milk quality.
Resumo:
L-glutaminase and glutamic acid decarboxylase (GAD) catalyzes the hydrolysis of L-glutamine and glutamate, respectively. L-glutaminase widely used in cancer therapy along with a combination of other enzymes and most importantly these enzymes were used in food industries, as a major catalyst of bioconversion. The current investigation was aimed to screen and select L-glutaminase, and GAD producing lactic acid bacteria (LAB). A total of 338 LAB were isolated from fermented meat, fermented fish, fermented soya bean, fermented vegetables and fruits. Among 338 isolates, 22 and 237 LAB has been found to be positive for L-glutaminase and GAD, respectively. We found that 30 days of incubation at 35 ºC and pH 6.0 was the optimum condition for glutaminase activity by G507/1. G254/2 was found to be the best for GAD activity with the optimum condition of pH 6.5, temperature 40 ºC and ten days of incubation. These LAB strains, G507/1 and G254/2, were identified as close relative of Lactobacillus brevis ATCC 14869 and Lactobacillus fermentum NBRC 3956, respectively by 16S rRNA sequencing. Further, improvements in up-stream of the fermentation process with these LAB strains are currently under development.