110 resultados para Partnerships between Academic and Student Affairs
Resumo:
The catalytic performance of Mg,Al-mixed oxides (MO20, MO25 and MO33) derived from hydrotalcites was evaluated in the Knoevenagel reaction between benzaldehyde and phenylsulfonylacetonitrile at 373 and 383 K. The best results were obtained for the sample MO20 that presented the highest basic sites density and external area and the smallest crystallite sizes. The relative amount of basic sites with weak to intermediate strength also played an important role on catalytic performance. By increasing the catalyst content from 1 to 5 wt.% at 383 K, a complete conversion of the reactants is attained, producing α-phenylsulfonylcinnamonitrile with a selectivity of 100%.
Resumo:
A capillary electrophoresis (CE) method was developed and validated for determination of cetirizine dihydrochloride in tablets and compounded capsules. The electrophoretic separation was performed in an uncoated fused-silica capillary (40 cm x 50 μm i.d.) using 20 mmol L-1 sodium tetraborate buffer (pH 9.3) as background electrolyte, a hydrodinamic sample injection at 50 mBar for 5 s, 20 KV applied voltage at 25 °C, and detection at 232 nm. The proposed method was compared with the high performance liquid chromatographic (HPLC) method previously validated for this drug, and statistical analysis showed no significant difference between the techniques.
Resumo:
The electrochemical behavior of the interaction of amodiaquine with DNA on a carbon paste electrode was studied using voltametric techniques. In an acid medium, an electroactive adduct is formed when amodiaquine interacts with DNA. The anodic peak is dependent on pH, scan rate and the concentration of the pharmaceutical. Adduct formation is irreversible in nature, and preferentially occurs by interaction of the amodiaquine with the guanine group. Theoretical calculations for optimization of geometry, and DFT analyses and on the electrostatic potential map (EPM), were used in the investigation of adduct formation between amodiaquine and DNA.
Resumo:
Mixed micellization and surface properties of cationic and nonionic surfactants dimethyl decyl-, tetradecyl- and hexadecyl phosphineoxide mixtures are studied using conductivity and surface tension measurements. The models of Rubingh, Rosen, and Clint, are used to obtain the interaction parameter, minimum area per molecule, mixed micelle composition, free energies of mixing and activity coefficients. The micellar mole fractions were always higher than ideal values indicating high contributions of cationics in mixed micelles. Activity coefficients were less than unity indicating synergism in micelles. The negative free energies of mixing showed the stability of the surfactants in the mixed micelles.
Resumo:
ABSTRACT We aimed in this work to study natural populations of copaiba (Copaifera multijuga Hayne) on the Monte Branco mountain at Porto Trombetas-PA, in order to support sustainable management and the exploitation of oleoresin from copaiba. We studied the population structure of copaiba on hillsides and valleys of the south face of Monte Branco, within Saracá Taquera National Forest, where bauxite ore was extracted in the biennium 2013-2014 by Mineração Rio do Norte (MRN). We produced a 100% forest inventory of the specie and of oleoresin extraction in order to quantify the potential production of the remaining area. The density of copaiba individuals with DBH > 30 cm was 0.33 individuals per hectare in the hillside and 0.25 individuals per hectare in the valley. Both environments presented a density of 0.28 individuals per hectare. The average copaiba oleoresin yield was 0.661±0.334 liters in the hillside and 0.765±0.280 liters in the valley. The average value of both environments together (hillside and valley) was 0.714±0.218 liters. From all individuals with DBH over 30 cm, 38 (58%) produced some amount of oleoresin, averaging 1.113±0.562 liters in the hillside, 1.329±0.448 liters in the valley and 1.190±0.355 liters in both environments together. The results show the need for planning the use of the surroundings of the study area in order to reach the required volume of copaiba to make feasible the sustainable management of oleoresin extraction in the region.