120 resultados para Nitric oxide synthesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological and case-controlled studies suggest that estrogen replacement therapy might be beneficial in terms of primary prevention of coronary heart disease (CHD). This beneficial effect of estrogens was initially considered to be due to the reduction of low density lipoproteins (LDL) and to increases in high density lipoproteins (HDL). Recent studies have shown that estrogens protect against oxidative stress and decrease LDL oxidation. Estrogens have direct effects on the arterial tissue and modulate vascular reactivity through nitric oxide and prostaglandin synthesis. While many of the effects of estrogen on vascular tissue are believed to be mediated by estrogen receptors alpha and ß, there is evidence for `immediate non-genomic' effects. The role of HDL in interacting with 17ß-estradiol including its esterification and transfer of esterified estrogens to LDL is beginning to be elucidated. Despite the suggested positive effects of estrogens, two recent placebo-controlled clinical trials in women with CHD did not detect any beneficial effects on overall coronary events with estrogen therapy. In fact, there was an increase in CHD events in some women. Mutations in thrombogenic genes (factor V Leiden, prothrombin mutation, etc.) in a subset of women may play a role in this unexpected finding. Thus, the cardioprotective effect of estrogens appears to be more complicated than originally thought and requires more research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is recognized that an imbalance of the autonomic nervous system is involved in the genesis of ventricular arrhythmia and sudden death during myocardial ischemia. In the present study we investigated the effects of clonidine and rilmenidine, two centrally acting sympathomodulatory drugs, on an experimental model of centrally induced sympathetic hyperactivity in pentobarbital-anesthetized New Zealand albino rabbits of either sex (2-3 kg, N = 89). We also compared the effects of clonidine and rilmenidine with those of propranolol, a ß-blocker, known to induce protective cardiovascular effects in patients with ischemic heart disease. Central sympathetic stimulation was achieved by intracerebroventricular injection of the excitatory amino acid L-glutamate (10 µmol), associated with inhibition of nitric oxide synthesis with L-NAME (40 mg/kg, iv). Glutamate triggered ventricular arrhythmia and persistent ST-segment shifts in the ECG, indicating myocardial ischemia. The intracisternal administration of clonidine (1 µg/kg) and rilmenidine (30 µg/kg) or of a nonhypotensive dose of rilmenidine (3 µg/kg) decreased the incidence of myocardial ischemia (25, 14 and 25%, respectively, versus 60% in controls) and reduced the mortality rate from 40% to 0.0, 0.0 and 12%, respectively. The total number of ventricular premature beats per minute fell from 30 ± 9 in the control group to 7 ± 3, 6 ± 3 and 2 ± 2, respectively. Intravenous administration of clonidine (10 µg/kg), rilmenidine (300 µg/kg) or propranolol (500 µg/kg) elicited similar protective effects. We conclude that clonidine and rilmenidine present cardioprotective effects of central origin, which can be reproduced by propranolol, a lipophilic ß-blocking agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cardiovascular protective actions of estrogen are partially mediated by a direct effect on the vessel wall. Estrogen is active both on vascular smooth muscle and endothelial cells where functionally competent estrogen receptors have been identified. Estrogen administration promotes vasodilation in humans and in experimental animals, in part by stimulating prostacyclin and nitric oxide synthesis, as well as by decreasing the production of vasoconstrictor agents such as cyclooxygenase-derived products, reactive oxygen species, angiotensin II, and endothelin-1. In vitro, estrogen exerts a direct inhibitory effect on smooth muscle by activating potassium efflux and by inhibiting calcium influx. In addition, estrogen inhibits vascular smooth muscle cell proliferation. In vivo, 17ß-estradiol prevents neointimal thickening after balloon injury and also ameliorates the lesions occurring in atherosclerotic conditions. As is the case for other steroids, the effect of estrogen on the vessel wall has a rapid non-genomic component involving membrane phenomena, such as alteration of membrane ionic permeability and activation of membrane-bound enzymes, as well as the classical genomic effect involving estrogen receptor activation and gene expression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In Leishmania amazonensis, kinetoplastid membrane protein-11 (KMP-11) expression increases during metacyclogenesis and is higher in amastigotes than in promastigotes, suggesting a role for this protein in the infection of the mammalian host. We show that the addition of KMP-11 exacerbates L. amazonensis infection in peritoneal macrophages from BALB/c mice by increasing interleukin (IL)-10 secretion and arginase activity while reducing nitric oxide (NO) production. The doses of KMP-11, the IL-10 levels and the intracellular amastigote loads were strongly, positively and significantly correlated. The increase in parasite load induced by KMP-11 was inhibited by anti-KMP-11 or anti-IL-10 neutralising antibodies, but not by isotype controls. The neutralising antibodies, but not the isotype controls, were also able to significantly decrease the parasite load in macrophages cultured without the addition of KMP-11, demonstrating that KMP-11-induced exacerbation of the infection is not dependent on the addition of exogenous KMP-11 and that the protein naturally expressed by the parasite is able to promote it. In this study, the exacerbating effect of KMP-11 on macrophage infection with Leishmania is for the first time demonstrated, implicating it as a virulence factor in L. amazonensis. The stimulation of IL-10 production and arginase activity and the inhibition of NO synthesis are likely involved in this effect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lipid bodies [lipid droplets (LBs)] are lipid-rich organelles involved in lipid metabolism, signalling and inflammation. Recent findings suggest a role for LBs in host response to infection; however, the potential functions of this organelle in Toxoplasma gondii infection and how it alters macrophage microbicidal capacity during infection are not well understood. Here, we investigated the role of host LBs in T. gondii infection in mouse peritoneal macrophages in vitro. Macrophages cultured with mouse serum (MS) had higher numbers of LBs than those cultured in foetal bovine serum and can function as a model to study the role of LBs during intracellular pathogen infection. LBs were found in association with the parasitophorous vacuole, suggesting that T. gondii may benefit from this lipid source. Moreover, increased numbers of macrophage LBs correlated with high prostaglandin E2 (PGE2) production and decreased nitric oxide (NO) synthesis. Accordingly, LB-enriched macrophages cultured with MS were less efficient at controlling T. gondii growth. Treatment of macrophages cultured with MS with indomethacin, an inhibitor of PGE2 production, increased the microbicidal capacity against T. gondii. Collectively, these results suggest that culture with MS caused a decrease in microbicidal activity of macrophages against T. gondii by increasing PGE2 while lowering NO production.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Toxoplasma gondii and Trypanosoma cruzi are intracellular parasites which, as part of their life cycle, induce a potent cell-mediated immunity (CMI) maintained by Th1 lymphocytes and IFN-g. In both cases, induction of a strong CMI is thought to protect the host against rapid parasite multiplication and consequent pathology and lethality during the acute phase of infection. However, the parasitic infection is not eliminated by the immune system and the vertebrate host serves as a parasite reservoir. In contrast, Leishmania sp, which is a slow growing parasite, appears to evade induction of CMI during early stages of infection as a strategy for surviving in a hostile environment (i.e., inside the macrophages which are their obligatory niche in the vertebrate host). Recent reports show that the initiation of IL-12 synthesis by macrophages during these parasitic infections is a key event in regulating CMI and disease outcome. The studies reviewed here indicate that activation/inhibition of distinct signaling pathways and certain macrophage functions by intracellular protozoa are important events in inducing/modulating the immune response of their vertebrate hosts, allowing parasite and host survival and therefore maintaining parasite life cycles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This review describes the ways in which the primary bradycardia and peripheral vasoconstriction evoked by selective stimulation of peripheral chemoreceptors can be modified by the secondary effects of a chemoreceptor-induced increase in ventilation. The evidence that strong stimulation of peripheral chemoreceptors can evoke the behavioural and cardiovascular components of the alerting or defence response which is characteristically evoked by novel or noxious stimuli is considered. The functional significance of all these influences in systemic hypoxia is then discussed with emphasis on the fact that these reflex changes can be overcome by the local effects of hypoxia: central neural hypoxia depresses ventilation, hypoxia acting on the heart causes bradycardia and local hypoxia of skeletal muscle and brain induces vasodilatation. Further, it is proposed that these local influences can become interdependent, so generating a positive feedback loop that may explain sudden infant death syndrome (SIDS). It is also argued that a major contributor to these local influences is adenosine. The role of adenosine in determining the distribution of O2 in skeletal muscle microcirculation in hypoxia is discussed, together with its possible cellular mechanisms of action. Finally, evidence is presented that in chronic systemic hypoxia, the reflex vasoconstrictor influences of the sympathetic nervous system are reduced and/or the local dilator influences of hypoxia are enhanced. In vitro and in vivo findings suggest this is partly explained by upregulation of nitric oxide (NO) synthesis by the vascular endothelium which facilitates vasodilatation induced by adenosine and other NO-dependent dilators and attenuates noradrenaline-evoked vasoconstriction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Macrophages are important components of natural immunity involved in inhibition of tumor growth and destruction of tumor cells. It is known that these cells can be activated for tumoricidal activity by lymphokines and bacterial products. We investigated whether YAC-1 tumor cells infected with Mycoplasma arginini stimulate nitric oxide (NO) release and macrophage cytotoxic activity. Thioglycollate-elicited macrophages from male BALB/c mice were co-cultured for 20 h with YAC-1 tumor cells infected or not with Mycoplasma arginini. The cytotoxic activity was evaluated by MTT assay and nitrite levels were determined with the Griess reagent. Thioglycollate-elicited macrophages co-cultured with noninfected YAC-1 cells showed low cytotoxic activity (34.7 ± 8.6%) and low production of NO (4.7 ± 3.1 µM NO2-). These macrophages co-cultured with mycoplasma-infected YAC-1 cells showed significantly higher cytotoxic activity (61.4 ± 9.1%; P<0.05) and higher NO production (48.5 ± 13 µM NO2-; P<0.05). Addition of L-NAME (10 mM), an inhibitor of NO synthesis, to these co-cultures reduced the cytotoxic activity to 37.4 ± 2% (P<0.05) and NO production to 3 ± 4 µM NO2- (P<0.05). The present data show that Mycoplasma arginini is able to induce macrophage cytotoxic activity and that this activity is partially mediated by NO.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nitric oxide (NO·) has been identified as a principal regulatory molecule of the immune system and the major cytotoxic mediator of activated immune cells. NO· can also react rapidly with a variety of biological species, particularly with the superoxide radical anion O2·- at almost diffusion-limited rates to form peroxynitrite anion (ONOO-). ONOO- and its proton-catalyzed decomposition products are capable of oxidizing a great diversity of biomolecules and can act as a source of toxic hydroxyl radicals. As a consequence, a strategy for the development of molecules with potential trypanocidal activities could be developed to increase the concentration of nitric oxide in the parasites through NO·-releasing compounds. In this way, the rate of formation of peroxynitrite from NO· and O2·- would be faster than the rate of dismutation of superoxide radicals by superoxide dismutases which constitute the primary antioxidant enzymatic defense system in trypanosomes. The adenosine transport systems of parasitic protozoa, which are also in certain cases implicated in the selective uptake of active drugs such as melarsoprol or pentamidine, could be exploited to specifically target these NO·-releasing compounds inside the parasites. In this work, we present the synthesis, characterization and biological evaluation of a series of molecules that contain both a group which would specifically target these drugs inside the parasites via the purine transporter, and an NO·-donor group that would exert a specific pharmacological effect by increasing NO level, and thus the peroxynitrite concentration inside the parasite.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is well known that essential hypertension evolves in most patients with "near normal" levels of plasma renin activity. However, these levels appear to be responsible for the high levels of arterial pressure because they are normalized by the administration of angiotensin II converting inhibitors or angiotensin receptor antagonist. In experimental animals, hypertension can be induced by the continuous intravenous infusion of small doses of angiotensin II that are not sufficient to evoke an immediate pressor response. However, this condition resembles the characteristics of essential hypertension because the high levels of blood pressure exist with normal plasma levels of angiotensin II. It is suggested that small amounts of angiotensin whose plasma levels are inappropriate for the existing size of extracellular volume stimulate oxidative stress which binds nitric oxide forming peroxynitrite. The latter compound oxidizes arachidonic acid producing isoprostaglandin F2a (an isoprostane) which is characterized by a strong antinatriuretic vasoconstrictor renal effect. In this chain of reactions the vasoconstrictor effects derived from oxygen quenching of nitric oxide and increased isoprostane synthesis could explain how hypertension is maintained with normal plasma levels of renin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Actin-based motor protein requirements and nitric oxide (NO) production are important features of macrophage activity during phagocytosis or microbicidal processes. Different classes of myosins contribute directly or indirectly to phagocytosis by providing mechanical force for phagosome closure or organelle movement. Recent data have shown the presence of myosins IC, II, V and IXb in phagosomes of bone marrow-derived murine macrophages. In our investigation we demonstrated the presence of different classes of myosins in J774 macrophages. We also analyzed the effect of gamma interferon (IFN-gamma), with or without calcium ionophore or cytochalasin B, on myosins as well as on inducible nitric oxide synthase (iNOS) expression and NO production. Myosins IC, II, Va, VI and IXb were identified in J774 macrophages. There was an increase of myosin V expression in IFN-gamma-treated cells. iNOS expression was increased by IFN-gamma treatment, while calcium ionophore and cytochalasin B had a negative influence on both myosin and iNOS expression, which was decreased. The increases in NO synthesis were reflected by increased iNOS expression. Macrophages activated by IFN-gamma released significant amounts of NO when compared to control groups. In contrast, NO production by calcium ionophore- and cytochalasin B-treated cells was similar to that of control cells. These results suggest that IFN-gamma is involved in macrophage activation by stimulating protein production to permit both phagocytosis and microbicidal activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To determine if radiocontrast impairs vascular relaxation of the renal artery, segments (4-5 mm in length) of canine renal artery were suspended in vitro in organ chambers to measure isometric force (95% O2/5% CO2, at 37ºC). Arterial segments with and without endothelium were placed at the optimal point of their length-tension relation and incubated with 10 µM indomethacin to prevent synthesis of endogenous prostanoids. The presence of nonionic radiocontrast (iohexol, Omnipaque 350, 1 ml in 25 ml control solution, 4% (v/v)) did not alter endothelium-dependent relaxation to acetylcholine in rings precontracted with both norepinephrine and prostaglandin F2alpha (N = 6). When the rings were precontracted with prostaglandin F2alpha, the presence of ionic contrast did not inhibit the relaxation of the arteries. However, in canine renal arteries contracted with norepinephrine, the presence of ionic radiocontrast (diatrizoate meglumine and diatrizoate sodium, MD-76, 1 ml in 25 ml control solution, 4% (v/v)) inhibited relaxation in response to acetylcholine, sodium nitroprusside (N = 6 in each group), and isoproterenol (N = 5; P < 0.05). Rings were relaxed less than 50% of norepinephrine contraction. Following removal of the contrast, vascular relaxation in response to the agonists returned to normal. These results indicate that ionic radiocontrast nonspecifically inhibits vasodilation (both cAMP-mediated and cGMP-mediated) of canine renal arteries contracted with norepinephrine. This reversible impairment of vasodilation could inhibit normal renal perfusion and act as a mechanism of renal failure following radiocontrast infusion. In the adopted experimental protocol the isoproterenol-induced relaxation of renal arteries precontracted with norepinephrine was more affected, suggesting a pivotal role of the cAMP system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The brewing and baking yeast Saccharomyces cerevisiae has been used as a model for stress response studies of eukaryotic cells. In this review we focus on the effect of high hydrostatic pressure (HHP) on S. cerevisiae. HHP exerts a broad effect on yeast cells characteristic of common stresses, mainly associated with protein alteration and lipid bilayer phase transition. Like most stresses, pressure induces cell cycle arrest. Below 50 MPa (500 atm) yeast cell morphology is unaffected whereas above 220 MPa wild-type cells are killed. S. cerevisiae cells can acquire barotolerance if they are pretreated with a sublethal stress due to temperature, ethanol, hydrogen peroxide, or pressure. Nevertheless, pressure only leads to protection against severe stress if, after pressure pretreatment, the cells are also re-incubated at room pressure. We attribute this effect to the inhibition of the protein synthesis apparatus under HHP. The global genome expression analysis of S. cerevisiae cells submitted to HHP revealed a stress response profile. The majority of the up-regulated genes are involved in stress defense and carbohydrate metabolism while most repressed genes belong to the cell cycle progression and protein synthesis categories. However, the signaling pathway involved in the pressure response is still to be elucidated. Nitric oxide, a signaling molecule involved in the regulation of a large number of cellular functions, confers baroprotection. Furthermore, S. cerevisiae cells in the early exponential phase submitted to 50-MPa pressure show induction of the expression level of the nitric oxide synthase inducible isoform. As pressure becomes an important biotechnological tool, studies concerning this kind of stress in microorganisms are imperative.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this article, we will review some behavioral, pharmacological and neurochemical studies from our laboratory on mice, which might contribute to our understanding of the complex processes of memory consolidation and reconsolidation. We discuss the post-training (memory consolidation) and post-reactivation (memory reconsolidation) effects of icv infusions of hemicholinium, a central inhibitor of acetylcholine synthesis, of intraperitoneal administration of L-NAME, a non-specific inhibitor of nitric oxide synthase, of intrahippocampal injections of an inhibitor of the transcription factor NF-κB, and the exposure of mice to a new learning situation on retention performance of an inhibitory avoidance response. All treatments impair long-term memory consolidation and retrieval-induced memory processes different from extinction, probably in accordance with the "reconsolidation hypothesis".

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Paracoccidioidomycosis (PCM) is a chronic systemic mycosis caused by the inhalation of the thermally dimorphic fungus Paracoccidioides brasiliensis as well as the recently described P. lutzii. Because the primary infection occurs in the lungs, we investigated the differential involvement of the right and left lungs in experimental P. brasiliensis infection. Lungs were collected from C57BL/6 mice at 70 days after intravenous infection with 1×106 yeast cells of a virulent strain of P. brasiliensis (Pb18). The left lung, which in mice is smaller and has fewer lobes than the right lung, yielded increased fungal recovery associated with a predominant interleukin-4 response and diminished synthesis of interferon-γ and nitric oxide compared with the right lung. Our data indicate differential involvement of the right and left lungs during experimental PCM. This knowledge emphasizes the need for an accurate, standardized protocol for tissue collection during studies of experimental P. brasiliensis infection, since experiments using the same lungs favor the collection of comparable data among different mice.