125 resultados para LEUKOCYTE SUBPOPULATIONS
Resumo:
Hypoxia activates endothelial cells by the action of reactive oxygen species generated in part by cyclooxygenases (COX) production enhancing leukocyte transmigration. We investigated the effect of specific COX inhibition on the function of endothelial cells exposed to hypoxia. Mouse immortalized endothelial cells were subjected to 30 min of oxygen deprivation by gas exchange. Acridine orange/ethidium bromide dyes and lactate dehydrogenase activity were used to monitor cell viability. The mRNA of COX-1 and -2 was amplified and semi-quantified before and after hypoxia in cells treated or not with indomethacin, a non-selective COX inhibitor. Expression of RANTES (regulated upon activation, normal T cell expressed and secreted) protein and the protective role of heme oxygenase-1 (HO-1) were also investigated by PCR. Gas exchange decreased partial oxygen pressure (PaO2) by 45.12 ± 5.85% (from 162 ± 10 to 73 ± 7.4 mmHg). Thirty minutes of hypoxia decreased cell viability and enhanced lactate dehydrogenase levels compared to control (73.1 ± 2.7 vs 91.2 ± 0.9%, P < 0.02; 35.96 ± 11.64 vs 22.19 ± 9.65%, P = 0.002, respectively). COX-2 and HO-1 mRNA were up-regulated after hypoxia. Indomethacin (300 µM) decreased COX-2, HO-1, hypoxia-inducible factor-1alpha and RANTES mRNA and increased cell viability after hypoxia. We conclude that blockade of COX up-regulation can ameliorate endothelial injury, resulting in reduced production of chemokines.
Resumo:
In many countries, photodynamic therapy (PDT) has been recognized as a standard treatment for malignant conditions (for example, esophageal and lung cancers) and non-malignant ones such as age-related macular degeneration and actinic keratoses. The administration of a non-toxic photosensitizer, its selective retention in highly proliferating cells and the later activation of this molecule by light to form reactive oxygen species that cause cell death is the principle of PDT. Three important mechanisms are responsible for the PDT effectiveness: a) direct tumor cell kill; b) damage of the tumor vasculature; c) post-treatment immunological response associated with the leukocyte stimulation and release of many inflammatory mediators like cytokines, growth factors, components of the complement system, acute phase proteins, and other immunoregulators. Due to the potential applications of this therapy, many studies have been reported regarding the effect of the treatment on cell survival/death, cell proliferation, matrix assembly, proteases and inhibitors, among others. Studies have demonstrated that PDT alters the extracellular matrix profoundly. For example, PDT induces collagen matrix changes, including cross-linking. The extracellular matrix is vital for tissue organization in multicellular organisms. In cooperation with growth factors and cytokines, it provides cells with key signals in a variety of physiological and pathological processes, for example, adhesion/migration and cell proliferation/differentiation/death. Thus, the focus of the present paper is related to the effects of PDT observed on the extracellular matrix and on the molecules associated with it, such as, adhesion molecules, matrix metalloproteinases, growth factors, and immunological mediators.
Resumo:
Neutrophils act as first-line-of-defense cells and the reduction of their functional activity contributes to the high susceptibilityto and severity of infections in diabetes mellitus. Clinical investigations in diabetic patients and experimental studies in diabetic rats and mice clearly demonstrated consistent defects of neutrophil chemotactic, phagocytic and microbicidal activities. Other alterations that have been reported to occur during inflammation in diabetes mellitus include: decreased microvascular responses to inflammatory mediators such as histamine and bradykinin, reduced protein leakage and edema formation, reduced mast cell degranulation, impairment of neutrophil adhesionto the endothelium and migration to the site of inflammation, production of reactive oxygen species and reduced release of cytokines and prostaglandin by neutrophils, increased leukocyte apoptosis, and reduction in lymph node retention capacity. Since neutrophil function requires energy, metabolic changes (i.e., glycolytic and glutaminolytic pathways) may be involved in the reduction of neutrophil function observed in diabetic states. Metabolic routes by which hyperglycemia is linked to neutrophil dysfunction include the advanced protein glycosylation reaction, the polyol pathway, oxygen-free radical formation, the nitric oxide-cyclic guanosine-3'-5'monophosphate pathway, and the glycolytic and glutaminolytic pathways. Lowering of blood glucose levels by insulin treatment of diabetic patients or experimental animals has been reported to have significant correlation with improvement of neutrophil functional activity. Therefore, changes might be primarily linked to a continuing insulin deficiency or to secondary hyperglycemia occurring in the diabetic individual. Accordingly, effective control with insulin treatment is likely to be relevant during infection in diabetic patients.
HLA-DRB1 alleles in juvenile-onset systemic lupus erythematosus: renal histologic class correlations
Resumo:
Human leukocyte antigens (HLA) DRB1*03 and DRB1*02 have been associated with systemic lupus erythematosus (SLE) in Caucasians and black populations. It has been observed that certain HLA alleles show stronger associations with SLE autoantibodies and clinical subsets, although they have rarely been associated with lupus renal histologic class. In the present study, HLA-DRB1 allele correlations with clinical features, autoantibodies and renal histologic class were analyzed in a cohort of racially mixed Brazilian patients with juvenile-onset SLE. HLA-DRB1 typing was carried out by polymerase chain reaction amplification with sequence-specific primers using genomic DNA from 55 children and adolescents fulfilling at least four of the American College of Rheumatology criteria for SLE. Significance was determined by the chi-square test applied to 2 x 2 tables. The HLA-DRB1*15 allele was most frequent in patients with renal, musculoskeletal, cutaneous, hematologic, cardiac, and neuropsychiatric involvement, as well as in patients positive for anti-dsDNA, anti-Sm, anti-U1-RNP, and anti-SSA/Ro antibodies, although an association between HLA alleles and SLE clinical features and autoantibodies could not be observed. The HLA-DRB1*17, HLA-DRB1*10, HLA-DRB1*15, and HLA-DRB1*07 alleles were significantly higher in patients with renal histologic class I, class IIA, class IIB, and class V, respectively. The present results suggest that the contribution of HLA- DRB1 alleles to juvenile-onset SLE could not be related to clinical or serological subsets of the disease, but it may be related to renal histologic classes, especially class I, class II A, class II B, and class V. The latter correlations have not been observed in literature.
Resumo:
The effect of N-acetylcysteine, a thiolic antioxidant, on attenuation of phosphamidon-induced oxidative stress and immune dysfunction was evaluated in adult male Wistar rats weighing 200-250 g. Rats were divided into four groups, 8 animals/group, and treated with phosphamidon, N-acetylcysteine or the combination of both for 28 days. Oral administration of phosphamidon (1.74 mg/kg), an organophosphate insecticide, increased serum malondialdehyde (3.83 ± 0.18 vs 2.91 ± 0.24 nmol/mL; P < 0.05) and decreased erythrocyte superoxide dismutase (567.8 ± 24.36 vs 749.16 ± 102.61 U/gHb; P < 0.05), catalase activity (1.86 ± 0.18 vs 2.43 ± 0.08 U/gHb; P < 0.05) and whole blood glutathione levels (1.25 ± 0.21 vs 2.28 ± 0.08 mg/gHb; P < 0.05) showing phosphamidon-induced oxidative stress. Phosphamidon exposure markedly suppressed humoral immune response as assessed by antibody titer to ovalbumin (4.71 ± 0.51 vs 8.00 ± 0.12 -log2; P < 0.05), and cell-mediated immune response as assessed by leukocyte migration inhibition (25.24 ± 1.04 vs 70.8 ± 1.09%; P < 0.05) and macrophage migration inhibition (20.38 ± 0.99 vs 67.16 ± 5.30%; P < 0.05) response. Phosphamidon exposure decreased IFN-у levels (40.7 ± 3.21 vs 55.84 ± 3.02 pg/mL; P < 0.05) suggesting a profound effect of phosphamidon on cell-mediated immune response. A phosphamidon-induced increase in TNF-α level (64.19 ± 6.0 vs 23.16 ± 4.0 pg/mL; P < 0.05) suggests a contributory role of immunocytes in oxidative stress. Co-administration of N-acetylcysteine (3.5 mmol/kg, orally) with phosphamidon attenuated the adverse effects of phosphamidon. These findings suggest that oral N-acetylcysteine treatment exerts protective effect and attenuates free radical injury and immune dysfunction caused by subchronic phosphamidon exposure.
Resumo:
Sepsis is a systemic inflammatory response that can lead to tissue damage and death. In order to increase our understanding of sepsis, experimental models are needed that produce relevant immune and inflammatory responses during a septic event. We describe a lipopolysaccharide tolerance mouse model to characterize the cellular and molecular alterations of immune cells during sepsis. The model presents a typical lipopolysaccharide tolerance pattern in which tolerance is related to decreased production and secretion of cytokines after a subsequent exposure to a lethal dose of lipopolysaccharide. The initial lipopolysaccharide exposure also altered the expression patterns of cytokines and was followed by an 8- and a 1.5-fold increase in the T helper 1 and 2 cell subpopulations. Behavioral data indicate a decrease in spontaneous activity and an increase in body temperature following exposure to lipopolysaccharide. In contrast, tolerant animals maintained production of reactive oxygen species and nitric oxide when terminally challenged by cecal ligation and puncture (CLP). Survival study after CLP showed protection in tolerant compared to naive animals. Spleen mass increased in tolerant animals followed by increases of B lymphocytes and subpopulation Th1 cells. An increase in the number of stem cells was found in spleen and bone marrow. We also showed that administration of spleen or bone marrow cells from tolerant to naive animals transfers the acquired resistance status. In conclusion, lipopolysaccharide tolerance is a natural reprogramming of the immune system that increases the number of immune cells, particularly T helper 1 cells, and does not reduce oxidative stress.
Resumo:
Integrins are heterodimeric receptors composed of α and β transmembrane subunits that mediate attachment of cells to the extracellular matrix and counter-ligands such as ICAM-1 on adjacent cells. β2 integrin (CD18) associates with four different α (CD11) subunits to form an integrin subfamily, which has been reported to be expressed exclusively on leukocytes. However, recent studies indicate that β2 integrin is also expressed by other types of cells. Since the gene for β2 integrin is located in the region of human chromosome 21 associated with congenital heart defects, we postulated that it may be expressed in the developing heart. Here, we show the results from several different techniques used to test this hypothesis. PCR analyses indicated that β2 integrin and the αL, αM, and αX subunits are expressed during heart development. Immunohistochemical studies in both embryonic mouse and chicken hearts, using antibodies directed against the N- or C-terminal of β2 integrin or against its α subunit partners, showed that β2 integrin, as well as the αL, αM, and αX subunits, are expressed by the endothelial and mesenchymal cells of the atrioventricular canal and in the epicardium and myocardium during cardiogenesis. In situ hybridization studies further confirmed the presence of β2 integrin in these various locations in the embryonic heart. These results indicate that the β2 integrin subfamily may have other activities in addition to leukocyte adhesion, such as modulating the migration and differentiation of cells during the morphogenesis of the cardiac valves and myocardial walls of the heart.
Resumo:
The in vivo antifungal activity of the naphthoquinone beta-lapachone against disseminated infection by Cryptococcus neoformans was investigated. Swiss mice were immunosuppressed daily with dexamethasone (0.5 mg per mouse) intraperitoneally for 3 days, the procedure was repeated 4 days later, and the animals were then challenged intravenously with C. neoformans (10(6) CFU/mL) 1 week later. Seven days after infection, the mice were divided into groups and treated daily with beta-lapachone (10 mg/kg, iv) for 7 (N = 6) and 14 days (N = 10). Amphotericin B (0.5 mg/kg) was used as comparator drug and an additional group received PBS. Treatment with beta-lapachone cleared the yeast from the spleen and liver, and the fungal burden decreased approximately 10(4) times in the lungs and brain 14 days after infection when compared to the PBS group (P < 0.05). This result was similar to that of the amphotericin B-treated group. Protection was suggestively due to in vivo antifungal activity of this drug and apparently not influenced by activation of the immune response, due to similar leukocyte cell counts among all groups. This study highlights the prospective use of beta-lapachone for treatment of disseminated cryptococcosis.
Resumo:
The objective of this study was to determine the effect of eight 5-hydroxy-5-trifluoromethyl-4,5-dihydro-1H-1-carboxyamidepyrazoles (TFDPs) on rat body temperature and baker’s yeast-induced fever. TFDPs or vehicle (5% Tween 80 in 0.9% NaCl, 5 mL/kg) were injected subcutaneously and rectal temperature was measured as a function of time in 28-day-old male Wistar rats (N = 5-12 per group). Antipyretic activity was determined in feverish animals injected with baker’s yeast (Saccharomyces cerevisiae suspension, 0.135 mg/kg, 10 mL/kg, ip). 3-Ethyl- and 3-propyl-TFDP (140 and 200 μmol/kg, respectively, 4 h after yeast injection) attenuated baker’s yeast-induced fever by 61 and 82%, respectively. These two effective antipyretics were selected for subsequent analysis of putative mechanisms of action. We then determined the effects on cyclooxygenase-1 and -2 (COX-1 and COX-2) activities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) oxidation in vitro, on tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels and on leukocyte counts in the washes of peritoneal cavities of rats injected with baker’s yeast. While 3-ethyl- and 3-propyl-TFDP did not reduce baker’s yeast-induced increases of IL-1β or TNF-α levels, 3-ethyl-TFDP caused a 42% reduction in peritoneal leukocyte count. 3-Ethyl- and 3-propyl-TFDP did not alter COX-1 or COX-2 activities in vitro, but presented antioxidant activity in the DPPH assay with an IC50 of 39 mM (25-62) and 163 mM (136-196), respectively. The data indicate that mechanisms of action of these two novel antipyretic pyrazole derivatives do not involve the classic inhibition of the COX pathway or pyrogenic cytokine release.
Resumo:
Statins are among the most prescribed drugs in recent clinical practice. They are also known for their pleiotropic actions, which are independent of their lipid-lowering properties. The effect of lovastatin was investigated against carrageenan-induced paw edema in male Wistar rats (200-250 g) and on leukocyte migration, as measured by carrageenan-induced peritonitis in male Swiss mice (20-25 g), which are models of acute inflammation. Lovastatin (administered 1 h prior to carrageenan), at oral doses of 2, 5, and 10 mg/kg, markedly attenuated paw edema formation in rats at the 4th hour after carrageenan injection (25, 43, and 37% inhibition, respectively). Inhibitions of 20, 45 and 80% were observed in the leukocyte migration, as evaluated by carrageenan-induced peritonitis in mice with lovastatin doses of 0.5, 1 and 5 mg/kg, as compared to controls. Furthermore, lovastatin (administered 1 h before initiation) reduced the nociceptive effect of the formalin test in mice, at both phases, at doses of 2, 5, and 10 mg/kg: first phase (51, 65, and 70%, respectively) and second phase (73, 57, and 66% inhibition of licking time, respectively). The anti-nociceptive activity of lovastatin was inhibited by naloxone (3 mg/kg, sc). Lovastatin (0.01, 0.1, and 1 µg/mL) inhibited by 23, 79, and 86%, respectively, the release of myeloperoxidase from human neutrophils. Leukocyte (predominantly neutrophils) infiltration was almost completely reduced by lovastatin treatment, as observed in the model of acute paw edema with hematoxylin and eosin staining. In addition, lovastatin decreased the number of cells expressing tumor necrosis factor-α (TNF-α) and the inducible form of nitric oxide synthase (iNOS) activity. Therefore, the alterations in leukocyte activity and cytokine release could contribute to the anti-inflammatory activity of lovastatin.
Resumo:
Selectins play an essential role in most inflammatory reactions, mediating the initial leukocyte-rolling event on activated endothelium. Heparin and dermatan sulfate (DS) bind and block P- and L-selectin function in vitro. Recently, we reported that subcutaneous administration of DS inhibits colon inflammation in rats by reducing macrophage and T-cell recruitment and macrophage activation. In the present study, we examined the effect of porcine intestinal mucosa DS on renal inflammation and fibrosis in mice after unilateral ureteral obstruction (UUO). Twenty-four adult male Swiss mice weighing 20-25 g were divided into 4 groups: group C (N = 6) was not subjected to any surgical manipulation; group SH (N = 6) was subjected to surgical manipulation but without ureter ligation; group UUO (N = 6) was subjected to unilateral ureteral obstruction and received no treatment; group UUO plus DS (N = 6) was subjected to UUO and received DS (4 mg/kg) subcutaneously daily for 14 days. An immunoblot study was also performed for TGF-β. Collagen (stained area ~3700 µm²), MCP-1 (stained area ~1700 µm²), TGF-β (stained area ~13% of total area), macrophage (number of cells ~40), and myofibroblast (stained area ~1900 µm²) levels were significantly (P < 0.05) higher in the UUO group compared to control. DS treatment significantly (P < 0.05) reduced the content of collagen (stained area ~700 µm²), MCP-1 (stained area ~160 µm²) and TGF-β (stained area ~5% of total area), in addition to myofibroblast (stained area ~190 µm²) and macrophage (number of cells ~32) accumulation in the obstructed kidney. Overall, these results indicate that DS attenuates kidney inflammation by reducing macrophage recruitment, myofibroblast population and fibrosis in mice submitted to UUO.
Resumo:
The aim of the present study was to determine whether lipoarabinomannan (LAM), in combination with Freund’s incomplete adjuvant (FIA), was able to improve cell-mediated and antibody-mediated immune responses against ovalbumin (OVA) in cattle. Twenty-three calves were assigned to four treatment groups, which were subcutaneously immunized with either OVA plus FIA, OVA plus FIA and LAM from Mycobacterium avium subsp avium, FIA plus LAM, or FIA alone. Lymphoproliferation, IFN-γ production and cell subpopulations on peripheral blood mononuclear cells before and 15 days after treatment were evaluated. Delayed hypersensitivity was evaluated on day 57. Specific humoral immune response was measured by ELISA. Inoculation with LAM induced higher levels of lymphoproliferation and IFN-γ production in response to ConA and OVA (P < 0.05). Specific antibody titers were similar in both OVA-immunized groups. Interestingly, our results showed that the use of LAM in vaccine preparations improved specific cell immune response evaluated by lymphoproliferation and IFN-γ production by at least 50 and 25%, respectively, in cattle without interfering with tuberculosis and paratuberculosis diagnosis.
Resumo:
The objective of the present cross-sectional study was to assess the prevalence and the clinical and laboratory features of hepatitis C virus (HCV)-positive patients with type 2 diabetes mellitus (DM) attending either an outpatient clinic or hemodialysis units. Serologic-HCV testing was performed in 489 type 2 DM patients (303 outpatients and 186 on dialysis). A structured assessment of clinical, laboratory and DM-related complications was performed and the patients were then compared according to HCV infection status. Mean patient age was 60 years; HCV positivity (HCV+) was observed in 39 of 303 (12.9%) outpatients and in 34 of 186 (18.7%) dialysis patients. Among HCV+ patients, 32 were men (43.8%). HCV+ patients had higher serum levels of aspartate aminotransferase (0.90 ± 0.83 vs 0.35 ± 0.13 µKat/L), alanine aminotransferase (0.88 ± 0.93 vs 0.38 ± 0.19 µKat/L), gamma-glutamyl transferase (1.57 ± 2.52 vs 0.62 ± 0.87 µKat/L; P < 0.001), and serum iron (17.65 ± 6.68 vs 14.96 ± 4.72 µM; P = 0.011), and lower leukocyte and platelet counts (P = 0.010 and P < 0.001, respectively) than HCV-negative (HCV-) patients. HCV+ dialysis patients had higher diastolic blood pressure than HCV- patients (87.5 ± 6.7 vs 81.5 ± 6.0 mmHg; P = 0.005) and a lower prevalence of diabetic retinopathy (75 vs 92.7%; P = 0.007). In conclusion, our study showed that HCV is common among subjects with type 2 DM but is not associated with a higher prevalence of chronic diabetic complications.
Resumo:
The objectives of this study were to determine if protein-energy malnutrition (PEM) could affect the hematologic response to lipopolysaccharide (LPS), the interleukin-1β (IL-1β) production, leukocyte migration, and blood leukocyte expression of CD11a/CD18. Two-month-old male Swiss mice were submitted to PEM (N = 30) with a low-protein diet (14 days) containing 4% protein, compared to 20% protein in the control group (N = 30). The total cellularity of blood, bone marrow, spleen, and bronchoalveolar lavage evaluated after the LPS stimulus indicated reduced number of total cells in all compartments studied and different kinetics of migration in malnourished animals. The in vitro migration assay showed reduced capacity of migration after the LPS stimulus in malnourished animals (45.7 ± 17.2 x 10(4) cells/mL) compared to control (69.6 ± 7.1 x 10(4) cells/mL, P ≤ 0.05), but there was no difference in CD11a/CD18 expression on the surface of blood leukocytes. In addition, the production of IL-1β in vivo after the LPS stimulus (180.7 pg·h-1·mL-1), and in vitro by bone marrow and spleen cells (41.6 ± 15.0 and 8.3 ± 4.0 pg/mL) was significantly lower in malnourished animals compared to control (591.1 pg·h-1·mL-1, 67.0 ± 23.0 and 17.5 ± 8.0 pg/mL, respectively, P ≤ 0.05). The reduced expression of IL-1β, together with the lower number of leukocytes in the central and peripheral compartments, different leukocyte kinetics, and reduced leukocyte migration capacity are factors that interfere with the capacity to mount an adequate immune response, being partly responsible for the immunodeficiency observed in PEM.
Resumo:
The effect of an adventure sprint race (ASR) on T-cell proliferation, leukocyte count and muscle damage was evaluated. Seven young male runners completed an ASR in the region of Serra do Espinhaço, Brazil. The race induced a strong leukocytosis (6.22±2.04×103 cells/mm3 beforevs 14.81±3.53×103 cells/mm3after the race), marked by a significant increase of neutrophils and monocytes (P<0.05), but not total lymphocytes, CD3+CD4+ or CD3+CD8+ cells. However, the T-cell proliferative response to mitogenic stimulation was increased (P=0.025) after the race, which contradicted our hypothesis that ASR, as a high-demand competition, would inhibit T-cell proliferation. A positive correlation (P=0.03, r=0.79) was observed between the proliferative response of lymphocytes after the race and the time to complete the race, suggesting that the proliferative response was dependent on exercise intensity. Muscle damage was evident after the race by increased serum levels of aspartate amino transferase (24.99±8.30 vs 50.61±15.76 U/L, P=0.003). The results suggest that humoral factors and substances released by damaged muscle may be responsible for lymphocyte activation, which may be involved in muscle recovery and repair.