170 resultados para Grains biosecurity
Resumo:
The influence of physical-chemical characteristics of maize grains and lactic acid concentrations on byproduct yields, generated by conventional wet milling, was studied during steeping, for four maize hybrids and two lactic acid concentrations (0.55 and 1.00%). For physical-chemical characterization, grain dimensions (length, thickness, and width) were determined, as well as mass of 100 grains, percentage of floating grains, volumetric mass, and centesimal composition. Statistical differences were found for percentage of floating grains (2.33 to 24.67%), volumetric mass (0.814 to 0.850 kg.L-1), mass of 100 grains (0.033 to 0.037 kg), water content (11.86 to 12.20%), proteins (8.21 to 9.06%), lipids (3.00 to 4.77%), and ashes (1.07 to 1.26%). There were no relationships of wet milling yields with maize appearance and physical-chemical characteristics. The addition of 1.00% lactic acid did not statistically improve byproduct yields; however, it favored separation of the grain components.
Resumo:
This study aims to evaluate the leaf concentration of nitrogen and phosphorus correlated to the production of photoassimilates in beans plants (Phaseolus vulgaris L.) under high [CO2] and drought stress. The experiment was conducted in Viçosa (Brazil), during the period from April to July 2009, by using open-top chambers equipped with CO2 injection system. The drought stress was applied, through the irrigation suspension, during the period from flowering to maturation. The experimental design was randomized blocks in split-plot scheme with four replication, where the plots with plants grown in [CO2] of 700 mg L-1 and [CO2] environment of 380 mg L-1 and the subplots with plants with and without drought stress. The results were submitted to ANOVA and Tukey test (p < 0.05). In the plants under high [CO2] with and without drought stress, the photosynthetic rate increased by 59%, while the dry matter presented an increment of 20% in the plants under high [CO2] without drought stress. Reductions in [N] and [P] occurred in plants grown under high [CO2], resulting in greater efficiency in nitrogen use for photosynthesis. The high [CO2] increase only the total dry matter and not the total mass of grains. The drought stress reduces the dry matter and mass of grain, even at high [CO2].
Resumo:
In Brazil, the State of Goiás is one of sugarcane expansion's frontiers to meet the growing demand for biofuels. The objective of this study was to identify the municipalities where there were replacement of annual crops (mainly grains) by sugarcane in the state of Goiás, as well as indicate correlations between the sugarcane expansion and the family farming production, in the period between 2005 and 2010. For this purpose, grains crop mask and sugarcane crop mask, obtained from satellite images, were intersected using geoprocessing techniques. It was also used IBGE data of sugarcane production and planted area, and data of family farming production linked with the National Food Acquisition Program (PAA), in relation to the number of cooperatives and family farmers. The crops masks and data tables of the National Food Acquisition Program were provided by National Food Supply Agency. There were 95 municipalities that had crops replacement, totaling 281,554 hectares of grains converted to sugarcane. We highlight the municipalities of Santa Isabel, Iaciara, Maurilândia, and Itapaci, where this change represented more than half of their agricultural areas. In relation to family farming, the sugarcane expansion in the state of Goiás has not affected their activities during the period studied.
Resumo:
ABSTRACT Roasting is one of the most complex coffee processing steps due to simultaneous transfers of heat and mass. During this process, beans lose mass because of fast physical and chemical changes that will set color and flavor of the commercial coffee beverage. Therefore, we aimed at assessing the kinetics of mass loss in commercially roasted coffee beans according to heating throughout the processing. For that, we used samples of 350-g Arabica coffee processed grains with water content of 0.1217 kga kg-1, in addition to a continuous roaster with firing gas. The roaster had initial temperatures of 285, 325, 345 and 380 °C, decreasing during the process up to 255, 285, 305 and 335 °C respectively. Mass loss was calculated by the difference between grain weight before and after roasting. We observed a linear variation directly dependent on roaster temperature. For each temperature during the process was obtained a constant mass loss rate, which was reported by the Arrhenius model with r2 above 0.98. In a roaster in non-isothermal conditions, the required activation energy to start the mass loss in a commercial coffee roasting index was 52.27 kJ mol -1.
Resumo:
The epidemiology, clinical picture and pathology of an outbreak of urolithiasis in cattle in southern Brazil are described. The disease occurred in August 1999 in a feedlot beef cattle herd. Five out of 1,100 castrated steers were affected. Clinical signs included colic and ventral abdominal distension. White, sand-grain-like mineral deposits precipitated on the preputial hairs. Affected cattle died spontaneously 24-48 hrs after the onset of the clinical signs. Only one animal recovered after perineal urethrostomy. Necropsy findings included calculi blocking the urethral lumen of the distal portion of the penile sigmoid flexure, urinary bladder rupture with leakage of urine into the abdominal cavity and secondary fibrinous peritonitis. Daily water intake was low since water sources were scarce and not readily available. The animals were fed rations high in grains and received limited amounts of roughage. Biochemical analysis revealed that the calculi were composed of ammonium phosphate. A calcium-phosphorus imbalance (0.4:0.6) was detected in the feedlot ration. For the outbreak, it is suggested that contributing factors to urolith formation include insufficient fiber ingestion, low water intake and high dietary levels of phosphorus. No additional cases were observed in that feedlot after preventive measures were established. Similar dietary mismanagement in fattening steers has been associated with obstructive urolithiasis in feedlot beef cattle in other countries.
Resumo:
A three dimensional nonlinear viscoelastic constitutive model for the solid propellant is developed. In their earlier work, the authors have developed an isotropic constitutive model and verified it for one dimensional case. In the present work, the validity of the model is extended to three-dimensional cases. Large deformation, dewetting and cyclic loading effects are treated as the main sources of nonlinear behavior of the solid propellant. Viscoelastic dewetting criteria is used and the softening of the solid propellant due to dewetting is treated by the modulus decrease. The nonlinearities during cyclic loading are accounted for by the functions of the octahedral shear strain measure. The constitutive equation is implemented into a finite element code for the analysis of propellant grains. A commercial finite element package ABAQUS is used for the analysis and the model is introduced into the code through a user subroutine. The model is evaluated with different loading conditions and the predicted values are in good agreement with the measured ones. The resulting model applied to analyze a solid propellant grain for the thermal cycling load.
Resumo:
Intercropping combined with competitive maize cultivars can reduce the use of herbicides to control weeds. The objective of this work was to evaluate the effects of intercropping cowpea and maize, as well as hand-weeding on maize morphology and yield. The experimental design was in randomized complete blocks, with treatments arranged in split-plots and five replications. The plots consisted of four maize cultivars (BA 8512, BA 9012, EX 4001, EX 6004) and the split-plots consisted of the following treatments: no-weeding; twice hand-weeding (20 and 40 days after sowing); and intercropping with cowpea ('Sempre Verde' cultivar), both maize and cowpea sown at the same time. The variables evaluated were: maize fresh green ears and grain yield; characteristics of internodes, leaves, tassels, ears, grains; plant height and ear insertion height; number of weed plants and species; fresh and dry biomass of weed species and cowpea. Ten weed species were outstanding during the experiment, many of them from the Poaceae family. No interactions were found between weed control method and maize cultivars for most variables evaluated; and plants from hand-weeded split-plots showed superior mean values compared to plants from non-weeded and intercropped split-plots, both not differing from each other. The cowpea was inefficient in controlling weed, reducing the maize yields and not producing any grain. The maize cultivars 'BA 8512' and 'BA 9012 showed the highest mean green ear yield, and the highest grain yield in hand-weeded, no-weeded and intercropped split-plots. On the other hand, the maize cultivar 'EX 6004' showed such high means only in no-weeded and intercropped split-plots. 'EX 4001 presented the worst means in these variables for hand-weeded, no-weeded ant intercropped split-plots.
Resumo:
Herbicides have simplified weed control, but the use of herbicides, besides being costly, resulted in the selection of herbicide-resistant weed biotypes and has become an environmental contamination factor. Herbicide use reduction is one of the goals of modern agriculture, with several alternatives being investigated, including intercropping. The objective of this study was to evaluate the effects of cowpea and corn cultivar intercropping on weed control and corn green-ear (immature ears with 80% humidity grains) and grain yield. A completely randomized block design with split-plots and four replications was used. AG 1051, AG 2060 and PL 6880 corn cultivars (assigned to plots) were submitted to the four treatments: no weeding, two hoe-weeding (22 and 41 days after planting), and intercropping with cowpea (BR 14 and IPA 206 cultivars, with indeterminate growth). The cowpea was planted (with corn planting) between the corn rows, in pits 1.0 m apart, with two plants per pit. The corn cultivars did not differ from each other as to weed density (WD), fresh above-ground weed biomass (WB), green-ear yield and grain yields. Higher WD and WB mean values were found in no weeding subplots; lower mean values in two hoe-weeding subplots; and intermediate mean values in intercropped subplots, indicating that cowpea plants had, to a certain extent, control over weeds. The no-weeded plots and the intercropped plots had lower green-ear and grain yields. Although the cowpea cultivars had a certain control over weeds (mean reductions of 22.5 and 18.3%, in terms of green matter density and weight of the above-ground part of weeds, respectively), they also competed against the corn plants, leading to yield reduction (mean reductions of 17.0 and 32% in green ear and grain yield, respectively). The cowpea cultivars did not produce grain, certainly due to the strong competition exerted by the corn and weeds on cowpea plants.
Resumo:
The aim of this study was to determine the economic damage threshold of Pigweed redroot for corn regarding its density. An experiment was conducted at the Agriculture Research station of Islamic Azad University branch of Gonabad during 2006. The experiment was carried out as a factorial in a randomized complete block design with three replications. In the experiments, the factors included corn (var. 704) densities of 7.5, 8.5 and 9.5 plants m-2 and pigweed redroot densities of 0, 2, 4, 6 and 8 plants m-2. The increase in Pigweed redroot density, decrease in crop grain and biomass yield components such as ear length, ear diameter, number of grains per row, row number, grain number in ear, grain yield and biological yield of corn, decreased. Also, with an increase in corn density, the number of grain per rows, row number, grain yield and biological yield of corn increased. The economic thresholds density of Pigweed redroot was 0.09 to 0.13 plants m-2 in corn different densities, and increased with corn density increases.
Resumo:
The aim of this study was to evaluate the growth and yield of soybean cultivar M-8766 in consortium with Brachiaria brizantha. BRS Piata and Brachiaria ruziziensis at different densities and sowing dates. The experimental design was randomized blocks with treatments arranged in a factorial 2 x 2 x 3 with four replications. Used as factors grass species (Brachiaria brizantha Piata and Brachiaria ruziziensis BRS) intercropped with soybean M-8766, sowing dates (12 and 24 days after soybean emergence) and three seeding rates (0, 5, 10 kg ha-1 of seed). At 71 days after soybean emergence were evaluated plant height, stem diameter, dry mass of leaves, stems and shoots, and 4 months after sowing determined the weight of 100 grains and soybean yield. The results showed that when seeded at a density of 10 kg ha-1 at 12 and 24 DAE soy, Brachiaria brizantha. BRS Piata caused reduction in yield in the order of 6.71% and 3.03% respectively, while the Brachiaria ruziziensis was one that caused a greater reduction in productivity in the order of 13.42 and 16.23%, respectively, of these values expression when considering the price of soybean sack. B. ruziziensis expressed less competitive with soybean. However, the large biomass production of this grass provides deployment system till the next harvest.
Resumo:
ALS-inhibiting herbicides usually provide adequate weed control in irrigated rice fields. After consecutive years of use, the Cyperaceae species, globe fringerush (Fimbristylis miliacea) began to show resistance to ALS (acetolactate synthase) inhibitors. Globe fringerush is one of the most problematic herbicide-resistant weeds in irrigated rice in the state of Santa Catarina in the South of Brazil. The objective of this research was to examine cross resistance of globe fringerush to ALS inhibitors, under field conditions. Two experiments were conducted in a rice field naturally infested with ALS-resistant globe fringerush in Santa Catarina, in the 2008/09 and 2009/10 cropping seasons. The experimental units were arranged in randomized complete block design, with five replicates, consisting of two factors (herbicide and dose) in a 4 x 5 factorial arrangement. ALS herbicides included bispyribac-sodium, ethoxysulfuron, pyrazosulfuron-ethyl and penoxsulam. Six-leaf globe fringerush was sprayed with herbicide doses of 0, 0.5, 1, 2 and 4X the recommended doses in a spray volume of 200 L ha-1. The number of rice culm, filled and sterile grains, plant height, dry shoot biomass and grain yield were recorded. Globe fringerush control was evaluated 28 and 70 days after herbicide application (DAA); shoots were harvested at 13 weeks after herbicide application and dry weight recorded. Competition with globe fringerush reduced the number of culm and rice grain yield. The globe fringerush biotype in this field was resistant to all ALS herbicides tested. Penoxsulam had the highest level of activity among treatments at 28 and 70 DAA, but the control level was only 50% and 42%, respectively, in the second year of assessment. This was not enough to prevent rice yield loss. Alternative herbicides and weed control strategies are necessary to avoid yield losses in rice fields infested with ALS-resistant biotypes of globe fringerush.
Resumo:
Roguing is a practice used to reduce the seed source of red rice escapes to control in Clearfield-rice areas. However, there is great difficulty in performing it in large and heavily infested rice fields. This objective of this work was to evaluate the effects of the use of imazamox herbicide, applied in different rates and times, on plants of Clearfield-rice and red rice. Four experiments were conducted during the 2007/08 and 2008/09 growing seasons, in completely randomized block design and treatments arranged in factorial design, using three replications per treatment. The treatments had increasing rates of imazamox, application times and rice cultivars. The rice cultivars tested were IRGA 417, IRGA 422 CL, Avaxi CL and Puitá INTA CL. The variables evaluated were the number of panicles m-2, number of grains panicle-1, spikelet sterility in rice and red rice; and, rice grain yield and its components. The imazamox reduced the seed production of red rice escapes in a simulated situation of commercial Clearfield-rice area. The greater percentage reductions were obtained when this herbicide was applied at final formation of the panicle or panicle exertion of the red rice plant escapes to control. The Puitá INTA CL cultivar has high level of resistance to imazamox, independent of rate and application times tested, becoming the only alternative to the use of this practice.
Resumo:
Determining the periods of weed competition with crops helps the producer to choose the most appropriate time to use weed control practices. This strategy allows for the reduction of the number of herbicide applications, reducing costs and the environmental impact of pesticides. The objectives were to determine the period before the interference (PBI) of crabgrass (Digitaria ciliaris) competing with flooded rice, the critical period of interference prevention (CPIP) of crabgrass with soybean and the effects of competition on the grains yield and their components. Experiments were conducted with the coexistence of BRS Querência rice cultivar with crabgrass, for periods of 0, 7, 14, 21, 28, 35, and 110 days after emergency (DAE) and Fundacep 53RR soybean cultivar, whose periods of coexistence and control of crabgrass were 0, 7, 14, 21, 28, 35, and 156 DAE. Rice can grow with crabgrass infestation until 18 DAE, while soybean should remain free from the presence of crabgrass in the period between 23 and 50 DAE. The grain yield and its components, in the crops studied, are affected when grown with crabgrass.
Resumo:
The use of fungi in weeds control programs depends upon the conidia production in large scale. Therefore, this study aimed to evaluate liquid and solid culture media and the cultivation by biphasic system for the conidia production of Bipolaris euphorbiae Muchovej & Carvalho a specific pathogen of Euphorbia heterophylla. The liquid media were obtained from agro-industrial waste or by-products, and the solid media were prepared with mixtures of grains and grain derivatives. The liquid medium made with sugar cane molasses stood out from the others because it provided great sporulation (23 x 10(4) conidia mL-1 of medium), conidial viability (99.7%), and formation of mycelial fungal biomass (1.26 g 100 mL-1 of medium). On solid media conidial production was markedly higher than in liquid media, especially the medium composed by a blend of sorghum grain (40%) and soybean hulls (60%) where the fungus produced 2.3 x 10(7) conidia g-1 of medium. The cultivation of B. euphorbiae in biphasic system not promoted a significant increase in the production of conidia. The solid media were more effective for the mass production of fungus and mixtures of grains and derivatives were effective for increasing conidia production.
Resumo:
The loss of grains during the harvest of glyphosate tolerant corn may generate volunteer plants, which can interfere in the conventional or glyphosate crop in succession. The current work aim to evaluate the control of the volunteer corn glyphosate tolerant under two weed stages. Aimed to evaluate the control of volunteer glyphosate tolerant corn in two stages of development. There were conducted two experiments with hybrid 2B688 HR (lepidoptera and glyphosate tolerant), the application were at V5 and V8 stage. The experiment was randomized block design with four replicates, using the treatments: haloxyfop at 25, 50 and 62 g ha-1 alone and associated with 2,4-D at 670 g ha-1 or fluroxypyr at 200 g ha-1. The standard was clethodim at 84 g ha-1 with 2,4-D and fluroxypyr at same rates. The applications of haloxyfop and clethodim both isolated or in a mixture with 2,4-D and fluroxypyr at V5 stage showed total control (100%) at 32 and 39 days after the application, except for haloxyfop + 2,4-D (25 + 670 g ha-1) mixture, which did not provided adequate control. At V8 stage, haloxyfop + 2,4-D (50 + 670 g ha-1) and haloxyfop + 2,4-D (62 + 670 g ha-1) mixtures took up to 6 and 10 days or longer to reach adequate to excellent control, when compared to haloxyfop isolated applications in the same doses, respectively. Either isolated clethodim or mixed with 2, 4-D and fluroxypyr did not show adequate control. The treatments showed efficient control on volunteer corn plants at V5 stage, except for haloxyfop + 2, 4-D (25 + 670 g ha-1) mixture. At V8 stage applications, haloxyfop either isolated or mixture with fluroxypyr demonstrated excellent control on every evaluated dose. The mixture with 2, 4-D can reduce haloxyfop efficiency at low doses. Clethodim alone or mixed with 2,4-D or furoxypyr did not provide acceptable level of control.