130 resultados para Endogenous mechanisms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelins (ETs) and sarafotoxins (SRTXs) belong to a family of vasoconstrictor peptides, which regulate pigment migration and/or production in vertebrate pigment cells. The teleost Carassius auratus erythrophoroma cell line, GEM-81, and Mus musculus B16 melanocytes express rhodopsin, as well as the ET receptors, ETB and ETA, respectively. Both cell lines are photoresponsive, and respond to light with a decreased proliferation rate. For B16, the doubling time of cells kept in 14-h light (14L):10-h darkness (10D) was higher compared to 10L:14D, or to DD. The doubling time of cells kept in 10L:14D was also higher compared to DD. Using real-time PCR, we demonstrated that SRTX S6c (12-h treatment, 100 pM and 1 nM; 24-h treatment, 1 nM) and ET-1 (12-h treatment, 10 and 100 pM; 24- and 48-h treatments, 100 pM) increased rhodopsin mRNA levels in GEM-81 and B16 cells, respectively. This modulation involves protein kinase C (PKC) and the mitogen-activated protein kinase cascade in GEM-81 cells, and phospholipase C, Ca2+, calmodulin, a Ca2+/calmodulin-dependent kinase, and PKC in B16 cells. Cells were kept under constant darkness throughout the gene expression experiments. These results show that rhodopsin mRNA levels can be modulated by SRTXs/ETs in vertebrate pigment cells. It is possible that SRTX S6c binding to the ETB receptors in GEM-81 cells, and ET-1 binding to ETA receptors in B16 melanocytes, although activating diverse intracellular signaling mechanisms, mobilize transcription factors such as c-Fos, c-Jun, c-Myc, and neural retina leucine zipper protein. These activated transcription factors may be involved in the positive regulation of rhodopsin mRNA levels in these cell lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercise is a low-cost intervention that promotes health and contributes to the maintenance of the quality of life. The present study was designed to investigate the influence of different resistance exercise protocols on the nociceptive threshold of rats. Female Wistar rats were used to perform exercises in a weight-lifting exercise model. The following groups were examined (N = 6 per group): untrained rats (control group); an acute protocol group consisting of rats submitted to 15 sets of 15 repetitions of resistance exercise (acute group); rats exercised with 3 sets of 10 repetitions, three times per week for 12 weeks (trained group), and a group consisting of trained rats that were further submitted to the acute protocol (trained-acute group). The nociceptive threshold was measured by the paw-withdrawal test, in which the withdrawal threshold (escape reaction) was measured by an apparatus applying force to the plantar surface of the animal paw. The opioid antagonist naloxone (2 mg/kg) was administered subcutaneously 10 min before the exercise protocols. The trained group demonstrated antinociception only up to day 45 of the 12-week training period. A significant increase (37%, P < 0.05) in the nociceptive threshold was produced immediately after exercise, decreasing to 15% after 15 min, when the acute exercise protocol was used. Naloxone reversed this effect. These data show that the acute resistance exercise protocol was effective in producing antinociception for 15 min. This antinociceptive effect is mediated by the activation of opioid receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) mediated by oxidative stress causes direct tumor cell damage as well as microvascular injury. To improve this treatment new photosensitizers are being synthesized and tested. We evaluated the effects of PDT with 5,10,15,20-tetrakis(4-methoxyphenyl)-porphyrin (TMPP) and its zinc complex (ZnTMPP) on tumor levels of malondialdehyde (MDA), reduced glutathione (GSH) and cytokines, and on the activity of caspase-3 and metalloproteases (MMP-2 and -9) and attempted to correlate them with the histological alterations of tumors in 3-month-old male Wistar rats, 180 ± 20 g, bearing Walker 256 carcinosarcoma. Rats were randomly divided into five groups: group 1, ZnTMPP+irradiation (IR) 10 mg/kg body weight; group 2, TMPP+IR 10 mg/kg body weight; group 3, 5-aminolevulinic acid (5-ALA+IR) 250 mg/kg body weight; group 4, control, no treatment; group 5, only IR. The tumors were irradiated for 15 min with red light (100 J/cm², 10 kHz, 685 nm) 24 h after drug administration. Tumor tissue levels of MDA (1.1 ± 0.7 in ZnTMPP vs 0.1 ± 0.04 nmol/mg protein in control) and TNF-α (43.5 ± 31.2 in ZnTMPP vs 17.3 ± 1.2 pg/mg protein in control) were significantly higher in treated tumors than in controls. Higher caspase-3 activity (1.9 ± 0.9 in TMPP vs 1.1 ± 0.6 OD/mg protein in control) as well as the activation of MMP-2 (P < 0.05) were also observed in tumors. These parameters were correlated (Spearman correlation, P < 0.05) with the histological alterations. These results suggest that PDT activates the innate immune system and that the effects of PDT with TMPP and ZnTMPP are mediated by reactive oxygen species, which induce cell membrane damage and apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epithelial-mesenchymal transition (EMT) is involved in neoplastic metastasis, and the RON protein may be involved. In the present study, we determined the role and the mechanisms of action of RON in EMT in Madin-Darby canine kidney (MDCK) cells by Western blot and cell migration analysis. Activation of RON by macrophage stimulating protein (MSP) results in cell migration and initiates changes in the morphology of RON-cDNA-transfected MDCK cells. The absence of E-cadherin, the presence of vimentin and an increase in Snail were observed in RE7 cells, which were derived from MDCK cells transfected with wt-RON, compared with MDCK cells. Stimulation of RE7 cells with MSP resulted in increased migration (about 69% of the wounded areas were covered) as well as increased activation of extracellular signal-regulated kinase 1/2 (Erk1/2) and glycogen synthase kinase-3β (GSK-3β; the percent of the activation ratio was 143.6/599.8% and 512.4%, respectively), which could be inhibited with an individual chemical inhibitor PD98059 (50 μM) specific to MAPK/ERK kinase (the percent inhibition was 98.9 and 81.2%, respectively). Thus, the results indicated that RON protein could mediate EMT in MDCK cells via the Erk1/2 pathway. Furthermore, GSK-3β regulates the function of Snail in controlling EMT by this pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The arterial partial pressure (P CO2) of carbon dioxide is virtually constant because of the close match between the metabolic production of this gas and its excretion via breathing. Blood gas homeostasis does not rely solely on changes in lung ventilation, but also to a considerable extent on circulatory adjustments that regulate the transport of CO2 from its sites of production to the lungs. The neural mechanisms that coordinate circulatory and ventilatory changes to achieve blood gas homeostasis are the subject of this review. Emphasis will be placed on the control of sympathetic outflow by central chemoreceptors. High levels of CO2 exert an excitatory effect on sympathetic outflow that is mediated by specialized chemoreceptors such as the neurons located in the retrotrapezoid region. In addition, high CO2 causes an aversive awareness in conscious animals, activating wake-promoting pathways such as the noradrenergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have projections that contribute to the CO2-induced rise in breathing and sympathetic outflow. However, since the level of activity of the retrotrapezoid nucleus is regulated by converging inputs from wake-promoting systems, behavior-specific inputs from higher centers and by chemical drive, the main focus of the present manuscript is to review the contribution of central chemoreceptors to the control of autonomic and respiratory mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ouabain, an endogenous digitalis compound, has been detected in nanomolar concentrations in the plasma of several mammals and is associated with the development of hypertension. In addition, plasma ouabain is increased in several hypertension models, and the acute or chronic administration of ouabain increases blood pressure in rodents. These results suggest a possible association between ouabain and the genesis or development and maintenance of arterial hypertension. One explanation for this association is that ouabain binds to the α-subunit of the Na+ pump, inhibiting its activity. Inhibition of this pump increases intracellular Na+, which reduces the activity of the sarcolemmal Na+/Ca2+ exchanger and thereby reduces Ca2+ extrusion. Consequently, intracellular Ca2+ increases and is taken up by the sarcoplasmic reticulum, which, upon activation, releases more calcium and increases the vascular smooth muscle tone. In fact, acute treatment with ouabain enhances the vascular reactivity to vasopressor agents, increases the release of norepinephrine from the perivascular adrenergic nerve endings and promotes increases in the activity of endothelial angiotensin-converting enzyme and the local synthesis of angiotensin II in the tail vascular bed. Additionally, the hypertension induced by ouabain has been associated with central mechanisms that increase sympathetic tone, subsequent to the activation of the cerebral renin-angiotensin system. Thus, the association with peripheral mechanisms and central mechanisms, mainly involving the renin-angiotensin system, may contribute to the acute effects of ouabain-induced elevation of arterial blood pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During three decades, an enormous number of studies have demonstrated the critical role of nitric oxide (NO) as a second messenger engaged in the activation of many systems including vascular smooth muscle relaxation. The underlying cellular mechanisms involved in vasodilatation are essentially due to soluble guanylyl-cyclase (sGC) modulation in the cytoplasm of vascular smooth cells. sGC activation culminates in cyclic GMP (cGMP) production, which in turn leads to protein kinase G (PKG) activation. NO binds to the sGC heme moiety, thereby activating this enzyme. Activation of the NO-sGC-cGMP-PKG pathway entails Ca2+ signaling reduction and vasodilatation. Endothelium dysfunction leads to decreased production or bioavailability of endogenous NO that could contribute to vascular diseases. Nitrosyl ruthenium complexes have been studied as a new class of NO donors with potential therapeutic use in order to supply the NO deficiency. In this context, this article shall provide a brief review of the effects exerted by the NO that is enzymatically produced via endothelial NO-synthase (eNOS) activation and by the NO released from NO donor compounds in the vascular smooth muscle cells on both conduit and resistance arteries, as well as veins. In addition, the involvement of the nitrite molecule as an endogenous NO reservoir engaged in vasodilatation will be described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on molecular mechanisms of carcinogenesis plays an important role in diagnosing and treating gastric cancer. Metabolic profiling may offer the opportunity to understand the molecular mechanism of carcinogenesis and help to non-invasively identify the potential biomarkers for the early diagnosis of human gastric cancer. The aims of this study were to explore the underlying metabolic mechanisms of gastric cancer and to identify biomarkers associated with morbidity. Gas chromatography/mass spectrometry (GC/MS) was used to analyze the serum metabolites of 30 Chinese gastric cancer patients and 30 healthy controls. Diagnostic models for gastric cancer were constructed using orthogonal partial least squares discriminant analysis (OPLS-DA). Acquired metabolomic data were analyzed by the nonparametric Wilcoxon test to find serum metabolic biomarkers for gastric cancer. The OPLS-DA model showed adequate discrimination between cancer and non-cancer cohorts while the model failed to discriminate different pathological stages (I-IV) of gastric cancer patients. A total of 44 endogenous metabolites such as amino acids, organic acids, carbohydrates, fatty acids, and steroids were detected, of which 18 differential metabolites were identified with significant differences. A total of 13 variables were obtained for their greatest contribution in the discriminating OPLS-DA model [variable importance in the projection (VIP) value >1.0], among which 11 metabolites were identified using both VIP values (VIP >1) and the Wilcoxon test. These metabolites potentially revealed perturbations of glycolysis and of amino acid, fatty acid, cholesterol, and nucleotide metabolism of gastric cancer patients. These results suggest that gastric cancer serum metabolic profiling has great potential in detecting this disease and helping to understand its metabolic mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biological functions of the BC047440 gene highly expressed by hepatocellular carcinoma (HCC) are unknown. The objective of this study was to reconstruct antisense eukaryotic expression vectors of the gene for inhibiting HepG2 cell proliferation and suppressing their xenograft tumorigenicity. The full-length BC047440 cDNA was cloned from human primary HCC by RT-PCR. BC047440 gene fragments were ligated with pMD18-T simple vectors and subsequent pcDNA3.1(+) plasmids to construct the recombinant antisense eukaryotic vector pcDNA3.1(+)BC047440AS. The endogenous BC047440 mRNA abundance in target gene-transfected, vector-transfected and naive HepG2 cells was semiquantitatively analyzed by RT-PCR and cell proliferation was measured by the MTT assay. Cell cycle distribution and apoptosis were profiled by flow cytometry. The in vivo xenograft experiment was performed on nude mice to examine the effects of antisense vector on tumorigenicity. BC047440 cDNA fragments were reversely inserted into pcDNA3.1(+) plasmids. The antisense vector significantly reduced the endogenous BC047440 mRNA abundance by 41% in HepG2 cells and inhibited their proliferation in vitro (P < 0.01). More cells were arrested by the antisense vector at the G1 phase in an apoptosis-independent manner (P = 0.014). Additionally, transfection with pcDNA3.1(+)BC047440AS significantly reduced the xenograft tumorigenicity in nude mice. As a novel cell cycle regulator associated with HCC, the BC047440 gene was involved in cell proliferation in vitro and xenograft tumorigenicity in vivo through apoptosis-independent mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animal models of gentamicin nephrotoxicity present acute tubular necrosis associated with inflammation, which can contribute to intensify the renal damage. Hydrogen sulfide (H2S) is a signaling molecule involved in inflammation. We evaluated the effect of DL-propargylglycine (PAG), an inhibitor of endogenous H2S formation, on the renal damage induced by gentamicin. Male Wistar rats (N = 8) were injected with 40 mg/kg gentamicin (im) twice a day for 9 days, some of them also received PAG (N = 8, 10 mg·kg-1·day-1, ip). Control rats (N = 6) were treated with saline or PAG only (N = 4). Twenty-four-hour urine samples were collected one day after the end of these treatments, blood samples were collected, the animals were sacrificed, and the kidneys were removed for quantification of H2S formation and histological and immunohistochemical studies. Gentamicin-treated rats presented higher sodium and potassium fractional excretion, increased plasma creatinine [4.06 (3.00; 5.87) mg%] and urea levels, a greater number of macrophages/monocytes, and a higher score for tubular interstitial lesions [3.50 (3.00; 4.00)] in the renal cortex. These changes were associated with increased H2S formation in the kidneys from gentamicin-treated rats (230.60 ± 38.62 µg·mg protein-1·h-1) compared to control (21.12 ± 1.63) and PAG (11.44 ± 3.08). Treatment with PAG reduced this increase (171.60 ± 18.34), the disturbances in plasma creatinine levels [2.20 (1.92; 4.60) mg%], macrophage infiltration, and score for tubular interstitial lesions [2.00 (2.00; 3.00)]. However, PAG did not interfere with the increase in fractional sodium excretion provoked by gentamicin. The protective effect of PAG on gentamicin nephrotoxicity was related, at least in part, to decreased H2S formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian stress response is an integrated physiological and psychological reaction to real or perceived adversity. Glucocorticoids are an important component of this response, acting to redistribute energy resources to both optimize survival in the face of challenge and to restore homeostasis after the immediate challenge has subsided. Release of glucocorticoids is mediated by the hypothalamo-pituitary-adrenal (HPA) axis, driven by a neural signal originating in the paraventricular nucleus (PVN). Stress levels of glucocorticoids bind to glucocorticoid receptors in multiple body compartments, including the brain, and consequently have wide-reaching actions. For this reason, glucocorticoids serve a vital function in negative feedback inhibition of their own secretion. Negative feedback inhibition is mediated by a diverse collection of mechanisms, including fast, non-genomic feedback at the level of the PVN, stress-shut-off at the level of the limbic system, and attenuation of ascending excitatory input through destabilization of mRNAs encoding neuropeptide drivers of the HPA axis. In addition, there is evidence that glucocorticoids participate in stress activation via feed-forward mechanisms at the level of the amygdala. Feedback deficits are associated with numerous disease states, underscoring the necessity for adequate control of glucocorticoid homeostasis. Thus, rather than having a single, defined feedback ‘switch’, control of the stress response requires a wide-reaching feedback ‘network’ that coordinates HPA activity to suit the overall needs of multiple body systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing). These defensive reaction responses are critically mediated by γ-aminobutyric acid and 5-hydroxytryptamine mechanisms in the midbrain tectum. Neurokinins (NKs) also play a role in the mediation of dPAG stimulation-evoked fear, but how NK receptors are involved in the global processing and expression of fear at the level of the midbrain tectum is yet unclear. The present study investigated the role of NK-1 receptors in unconditioned defensive behavior induced by electrical stimulation of the dPAG and IC of male Wistar rats. Spantide (100 pmol/0.2 μL), a selective NK-1 antagonist, injected into these midbrain structures had anti-aversive effects on defensive responses and distress ultrasonic vocalizations induced by stimulation of the dPAG but not of the IC. Moreover, intra-dPAG injections of spantide did not influence post-stimulation freezing or alter exploratory behavior in rats subjected to the elevated plus maze. These results suggest that NK-1 receptors are mainly involved in the mediation of defensive behavior organized in the dPAG. Dorsal periaqueductal gray-evoked post-stimulation freezing was not affected by intra-dPAG injections of spantide, suggesting that NK-1-mediated mechanisms are only involved in the output mechanisms of defensive behavior and not involved in the processing of ascending aversive information from the dPAG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity is strongly associated with high blood pressure, dyslipidemia, and type 2 diabetes. These conditions synergistically increase the risk of cardiovascular events. A number of central and peripheral abnormalities can explain the development or maintenance of high blood pressure in obesity. Of great interest is endothelial dysfunction, considered to be a primary risk factor in the development of hypertension. Additional mechanisms also related to endothelial dysfunction have been proposed to mediate the development of hypertension in obese individuals. These include: increase in both peripheral vasoconstriction and renal tubular sodium reabsorption, increased sympathetic activity and overactivation of both the renin-angiotensin system and the endocannabinoid system and insulin resistance. The discovery of new mechanisms regulating metabolic and vascular function and a better understanding of how vascular function can be influenced by these systems would facilitate the development of new therapies for treatment of obesity-associated hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the hemodynamic mechanisms responsible for the attenuated blood pressure response to mental stress after exercise, 26 healthy sedentary individuals (age 29 ± 8 years) underwent the Stroop color-word test before and 60 min after a bout of maximal dynamic exercise on a treadmill. A subgroup (N = 11) underwent a time-control experiment without exercise. Blood pressure was continuously and noninvasively recorded by infrared finger photoplethysmography. Stroke volume was derived from pressure signals, and cardiac output and peripheral vascular resistance were calculated. Perceived mental stress scores were comparable between mental stress tests both in the exercise (P = 0.96) and control (P = 0.24) experiments. After exercise, the blood pressure response to mental stress was attenuated (pre: 10 ± 13 vs post: 6 ± 7 mmHg; P < 0.01) along with lower values of systolic blood pressure (pre: 129 ± 3 vs post: 125 ± 3 mmHg; P < 0.05), stroke volume (pre: 89.4 ± 3.5 vs post: 76.8 ± 3.8 mL; P < 0.05), and cardiac output (pre: 7.00 ± 0.30 vs post: 6.51 ± 0.36 L/min; P < 0.05). Except for heart rate, the hemodynamic responses and the mean values during the two mental stress tests in the control experiment were similar (P > 0.05). In conclusion, a single bout of maximal dynamic exercise attenuates the blood pressure response to mental stress in healthy subjects, along with lower stroke volume and cardiac output, denoting an acute modulatory action of exercise on the central hemodynamic response to mental stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our previous study has shown that reduced insulin resistance (IR) was one of the possible mechanisms for the therapeutic effect of silibinin on non-alcoholic fatty liver disease (NAFLD) in rats. In the present study, we investigated the pathways of silibinin in regulating hepatic glucose production and IR amelioration. Forty-five 4- to 6-week-old male Sprague Dawley rats were divided into a control group, an HFD group (high-fat diet for 6 weeks) and an HFD + silibinin group (high-fat diet + 0.5 mg kg-1·day-1 silibinin, starting at the beginning of the protocol). Both subcutaneous and visceral fat was measured. Homeostasis model assessment-IR index (HOMA-IR), intraperitoneal glucose tolerance test and insulin tolerance test (ITT) were performed. The expression of adipose triglyceride lipase (ATGL) and of genes associated with hepatic gluconeogenesis was evaluated. Silibinin intervention significantly protected liver function, down-regulated serum fat, and improved IR, as shown by decreased HOMA-IR and increased ITT slope. Silibinin markedly prevented visceral obesity by reducing visceral fat, enhanced lipolysis by up-regulating ATGL expression and inhibited gluconeogenesis by down-regulating associated genes such as Forkhead box O1, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Silibinin was effective in ameliorating IR in NAFLD rats. Reduction of visceral obesity, enhancement of lipolysis and inhibition of gluconeogenesis might be the underlying mechanisms.