202 resultados para Embankment on reinforced soil
Resumo:
Field capacity (FC) is a parameter widely used in applied soil science. However, its in situ method of determination may be difficult to apply, generally because of the need of large supplies of water at the test sites. Ottoni Filho et al. (2014) proposed a standardized procedure for field determination of FC and showed that such in situ FC can be estimated by a linear pedotransfer function (PTF) based on volumetric soil water content at the matric potential of -6 kPa [θ(6)] for the same soils used in the present study. The objective of this study was to use soil moisture data below a double ring infiltrometer measured 48 h after the end of the infiltration test in order to develop PTFs for standard in situ FC. We found that such ring FC data were an average of 0.03 m³ m- 3 greater than standard FC values. The linear PTF that was developed for the ring FC data based only on θ(6) was nearly as accurate as the equivalent PTF reported by Ottoni Filho et al. (2014), which was developed for the standard FC data. The root mean squared residues of FC determined from both PTFs were about 0.02 m³ m- 3. The proposed method has the advantage of estimating the soil in situ FC using the water applied in the infiltration test.
Liming in Agricultural Production Models with and Without the Adoption of Crop-Livestock Integration
Resumo:
ABSTRACT Perennial forage crops used in crop-livestock integration (CLI) are able to accumulate large amounts of straw on the soil surface in no-tillage system (NTS). In addition, they can potentially produce large amounts of soluble organic compounds that help improving the efficiency of liming in the subsurface, which favors root growth, thus reducing the risks of loss in yield during dry spells and the harmful effects of “overliming”. The aim of this study was to test the effects of liming on two models of agricultural production, with and without crop-livestock integration, for 2 years. Thus, an experiment was conducted in a Latossolo Vermelho (Oxisol) with a very clayey texture located in an agricultural area under the NTS in Bandeirantes, PR, Brazil. Liming was performed to increase base saturation (V) to 65, 75, and 90 % while one plot per block was maintained without the application of lime (control). A randomized block experimental design was adopted arranged in split-plots and four plots/block, with four replications. The soil properties evaluated were: pH in CaCl2, soil organic matter (SOM), Ca, Mg, K, Al, and P. The effects of liming were observed to a greater depth and for a long period through mobilization of ions in the soil, leading to a reduction in SOM and Al concentration and an increase in pH and the levels of Ca and Mg. In the first crop year, adoption of CLI led to an increase in the levels of K and Mg and a reduction in the levels of SOM; however, in the second crop year, the rate of decline of SOM decreased compared to the decline observed in the first crop year, and the level of K increased, whereas that of P decreased. The extent of the effects of liming in terms of depth and improvement in the root environment from the treatments were observed only partially from the changes observed in the chemical properties studied.
Resumo:
ABSTRACT Information on fertilizer management for cotton in narrow-row cropping system is scarce; therefore, studies are needed to improve nutrient stewardship for such systems. The aim of this study was to evaluate the effects of nitrogen and potassium application on yield and fiber quality of cotton under a narrow-row system. A field trial was carried out for three years, where the treatments were set up in an incomplete factorial arrangement [(4 × 4) + 1] under a randomized block design, with four N rates (20, 40, 60, and 80 kg ha-1), four K2O rates (0, 40, 80, and 120 kg ha-1), and one control (no N or K2O), for a total of 17 treatments, with four replicates. Urea and potassium chloride were applied on the soil surface 20 days after crop emergence. Varieties used were FMT 701 (2009/2010 and 2010/2011) and FMT 709 (2011/2012). Cotton yield and fiber quality parameters were measured. In the narrow-row cropping system, cotton lint yield was positively affected by N and K application. Cotton yield in relation to K applications was not dependent on N rates. Potassium application increased the micronaire index and fiber resistance, whereas high N rates reduced fiber resistance.
Resumo:
The objective of this work was to evaluate the efficiency of a new method, developed for predicting density and floristic composition of weed communities in field crops. Based on the use of solaria (100 mm transparent plastic tarps lying on the soil) to stimulate weed seedlings emergence, the method was tested in Tandil, Argentina, from 1998 to 2001. The system involved corn and sunflower in commercial no-till system. Major weeds in the experiments included Digitaria sanguinalis, Setaria verticillata and S. viridis, which accounted for 98% of the weed community in the three years of experiments since 1998. Large numbers of Tagetes minuta, Chenopodium album and Ammi majus were present in 2001. Comparison of weed communities under solaria with communities in field crops indicated that the method is useful for predicting the presence and density of some major weed species, at both high and low densities, of individuals in areas of 10 ha using only five solaria. Low density of weed species makes the method particularly useful to help deciding the time for herbicide applications to avoid soil contamination.
Resumo:
The objective of this work was to evaluate changes in the photosynthetic photon flux density (PPFD) interception efficiency and PPFD extinction coefficient for maize crop subjected to different soil tillage systems and water availability levels. Crops were subjected to no-tillage and conventional tillage systems combined with full irrigation and non-irrigation treatments. Continuous measurements of transmitted PPFD on the soil surface and incoming PPFD over the canopy were taken throughout the crop cycle. Leaf area index and soil water potential were also measured during the whole period. Considering a mean value over the maize cycle, intercepted PPFD was higher in the conventional tillage than in the no-tillage system. During the initial stages of plants, intercepted PPFD in the conventional tillage was double the PPFD interception in the no-tillage treatment. However, those differences were reduced up to the maximum leaf area index, close to tasseling stage. The lowest interception of PPFD occurred in the conventional tillage during the reproductive period, as leaf senescence progressed. Over the entire crop cycle, the interception of PPFD by the non-irrigated plants was about 20% lower than by the irrigated plants. The no-tillage system reduced the extinction coefficient for PPFD, which may have allowed a higher penetration of solar radiation into the canopy
Resumo:
The aim of this study was to evaluate the response to phosphorus (P) and potassium (K) fertilization and to establish the critical levels of P and K in the soil and in the plant tissue in pear trees. Two experiments were conducted in São Joaquim (SC), Brazil. In experiment 1, the plants received annually the application of increasing rates of phosphate fertilizer (0, 40, 80, 120 and 160 kg P2O5 ha-1), while in experiment 2, increasing rates of potassium fertilizer (0, 40, 80, 120 and 160 kg K2O ha-1) were applied annually. In the two experiments, soil was collected annually from the 0-10, 10-20 and 0-20 cm layers, and the available P (experiment 1) and exchangeable K (experiment 2) content was analyzed. Whole leaves were collected annually, which were subjected to analysis of total P (experiment 1) and total K (experiment 2) content. The number and weight of the fruits per plant and fruit yield were evaluated. Application of P on the soil planted with pear trees increased the nutrient content in the soil and, in most crop seasons, in the whole leaf, but it did not affect the yield components and fruit yield. The application of K on the soil with pear trees increased the nutrient content in the soil and, in most of the crop seasons, in the whole leaf, but the potassium content in the whole leaf decreased in the crop season with greater fruit yield. The yield components and fruit yield were not affected by K fertilization.
Resumo:
Pharmaceutical drugs have been detected in sewage treatment plants, surface waters, underground waters and potable waters. Some investigations have been conducted in several countries such as Germany, Brazil, Canada, United States, The Netherlands, England and Italy. Patients and animals excrete part of pharmaceuticals used for human and veterinary medicine after administration in domestic sewage or on the soil. Drugs residues which have not been completely removed during passage through a sewage treatment plant (STP) enter the aquatic environment. The effects of such residual drugs in terrestrial and aquatic organisms are scarcely known.
Resumo:
Necrotrophic parasites of above-ground plant parts survive saprophytically, between growing seasons in host crop residues. In an experiment conducted under field conditions, the time required in months for corn and soybean residues to be completely decomposed was quantified. Residues were laid on the soil surface to simulate no-till farming. Crop debris of the two plant species collected on the harvesting day cut into pieces of 5.0cm-long and a 200g mass was added to nylon mesh bags. At monthly intervals, bags were taken to the laboratory for weighing. Corn residues were decomposed within 37.0 months and those of soybean, within 34.5 months. Hw main necrotrophic fungi diagnosed in the corn residues were Colletotrichum gramicola, Diplodia spp. and Gibberella zeae, and those in soybeans residues were Cercospora kikuchii, Colletotrichum spp, Glomerella sp. and Phomopsis spp. Thus, those periods shoulb be observed in crop rotation aimed at to eliminating contaminated residues and, consequently, the inoculum from the cultivated area.
Resumo:
When using appropriate inflation pressures and load capacity (ballast), it may obtain a higher yield and prolongation of the life of the tire, besides it may minimize the problems of loss of traction, increased slippage and fuel consumption. This study aimed to evaluate the fuel consumption of a tractor operating with new and worn tires in three conditions of ballasting and three inflation pressures, when driving on compacted soil with vegetation cover. The experiment was conducted at the experimental unit from the Department of Animal Science, Federal University of Lavras, state of Minas Gerais, Brazil, in an agricultural soil compacted by cattle trampling and with vegetation cover. It was used a tractor 4x2 with front wheel assist, of a 65.62 kW engine power. The tires were of R1 type, diagonal (front: 12.4 to 24; and rear: 18.4 to 30), the average height of the clutches of the new tires were 0.3 and 0.35 m for front and rear tires, respectively, and for the worn tires were 0.018 and 0.0045 m, for the front and the rear tires, respectively. The results showed advantages for the tractor equipped with new tires.
Resumo:
Vegetation cover on soil acts positively in maintaining temperature and soil moisture, yet, it has been imposing specific operational conditions on seeders. The objective of this study was to evaluate performance of different mechanisms regarding straw mobilization, employed in a no-till seeder. The experimental area was conducted on clayey soil under no-tillage with a large quantity of sorghum residue. The experiment was established in a randomized block design, as the treatments consisted of a combination of two mechanisms at front of the furrow opener composed of cutting disc and row cleaners, and three mechanisms behind the seed furrower, covering discs prototype model M1, Spider and commercial model, with the combination of cutting disc and Spider model not being evaluated. We assessed the coverage permanence on soil index, vegetation mass on surface and inside the line. The treatment containing the row cleaner mechanism efficiently removed straw from the surface of sowing line as well as the return one acted on straw replacement. It was identified that use of the cutting disc at the front of seeder contributed to the increase of straw installation inside the line, three times more than in the row cleaner system when operating individually. Covering mechanism with row cleaners reduced straw inside the line and kept line covering similar to treatment of cutting disc operating alone.
Resumo:
ABSTRACT Total Ammoniacal Nitrogen - TAN (NH3 + NH4+) in wastewaters cause environmental degradation concerns due to their negative impacts on air, soil and water. Several technologies are available for TAN removal from the wastewaters. One emerging technology is the use of hydrophobic membrane as non-destructive NH3 extraction. In this paper the authors discuss the uses of gas permeable membrane (GPM) and its physicochemical characteristics that influence gas mass transfer rate, diffusion and recovery mechanisms of NH3 from liquid sources (e.g. animal wastewater). Several aspects of NH3 extraction from liquid manure and other TAN generation sources using GPM technology as well as its applicability for NH3 mitigation from liquid effluents and possible recovery as a nutrient for plant growth are also discussed in this review.
Resumo:
This study aimed to evaluate different crops and plant species planted after soybeans for one year, in terms of their potential to inhibit the occurrence of weed species. The following crops that were planted as second crop after soybeans were evaluated: (1) corn (Zea mays) planted at spacing of 90 cm between rows, intercropped with Brachiaria ruziziensis in the inter-rows; (2) sunflower (Helianthus annuus); (3) crambe (Crambe abyssinica); (4) radish (Raphanus sativus); (5) rapeseed (Brassica napus); and (6) winter fallow - no plantation after soybeans. Phytosociological characterization of weed species was carried out at the pre-planting of soybeans in the following cropping season. Estimations of relative abundance, relative frequence, relative dominance and Importance Value Index were made for each species present. Areas were also intra-characterized by the diversity coefficients of Simpson and modified Shannon-Weiner, and areas were compared using the Jaccard similarity coefficient for presence-only, by multivariate cluster analysis. In the short‑term (a single cropping season), cultivation of winter crops do contribute for lower occurrence of weed species at the pre-planting of soybeans on the subsequent cropping season. The suppressive effects depend both on the species grown in the winter and in the amount of straw left on the soil by these winter crops. Radish was more efficient in inhibiting the occurrence of weed species and rapeseed showed composition of infestation similar to that observed at the area under fallow.
Resumo:
Specific knowledge about the dormancy, germination, and emergence patterns of weed species aids the development of integrated management strategies. Laboratory studies were conducted to determine the effect of several environmental factors on seed germination and seedling emergence of Cyperus difformis. Germination of freshly harvested seeds was inhibited by darkness; however, when seeds were subsequently transferred to complete light they germinated readily. Our results showed that 2 wk of cold stratification overcome the light requirement for germination. Seeds of C. difformis were able to germinate over a broad range of temperatures (25/15, 30/20, 35/25, and 40/30 ºC day/night). The response of germination rate to temperature was described as a non-linear function. Based on model outputs, the base, the optimum and the ceiling temperatures were estimated as 14.81, 37.72 and 45 ºC, respectively. A temperature of 120 ºC for a 5 min was required to inhibit 50% of maximum germination. The osmotic potential and salinity required for 50% inhibition of maximum germination were -0.47 MPa and 135.57 mM, respectively. High percentage of seed germination (89%) was observed at pH=6 and decreased to 12% at alkaline medium (pH 9) pH. Seeds sown on the soil surface gave the greatest percentage of seedling emergence, and no seedlings emerged from seeds buried in soil at depths of 1 cm.
Resumo:
The aim of this work was to analyze the effect of temperature and light intensity on trumpet flower seed germination, as well as the effect of seeding depth on its emergence. To study the influence of temperature, nine temperature intervals were evaluated, ranging from 15.0 to 40.0 ºC. A randomized block design experiment was used with five replications and 20 seeds per replication, and performed twice. To evaluate light intensity on seed germination, a randomized experimental design was used with eight replications and 25 seeds per replication. The treatments applied were: photoperiod with temperature alternation; photoperiod with constant temperature; darkness with temperature alternation; and darkness with constant temperature. The photoperiod consisted of 8 hours of light and 16 hours of darkness, and the constant temperature was 25 ºC. The treatments with temperature alternations were established with 8 hours at 30 ºC, and 16 hours at 20 ºC. Germination was assessed daily to calculate the total percentage of germination as well as the Germination Velocity Index (GVI). To study the influence of seeding depth on plant emergence, 25 seeds were seeded at 0, 20, 40, and 80 mm in pots with sieved soil. The experiment was arranged in a randomized block design with four replications. Seedling emergence was monitored daily until the 15th day after seeding. After that period, the total percentage of emergence was calculated for each experimental unit, as well as the Emergence Velocity Index (EVI). Formation of normal seedlings and the Germination Velocity Index were different among temperatures and higher germination percentages were observed between 20.3 ºC and 37.5 ºC. Tecoma stans seedlings did not germinate when planted at 40 and 80 mm depth. However, the seedlings placed on the soil surface had an emergence percentage of 72. At 20 mm depth, the emergence rate was 31%.
Resumo:
The success of conservation systems such as no-till depends on adequate soil cover throughout the year, which is possible through the use of cover crops. For this purpose the species belonging to the genus Urochloa has stood out by virtue of its hardiness and tolerance to drought. Aiming ground cover for the no-till system, the objective was to evaluate the establishment of two species of the genus Urochloa, in three sowing methods, in the weed suppression and the sensitivity of these forages to glyphosate. The study design was a randomized block with a 2 x 3 x 3 factorial arrangement, in which factor A was composed of Urochloa ruziziensis and Urochloa hybrid CIAT 36087 cv. Mulato II, factor B was formed by sowing methods: sown without embedding, sown with light embedding and sown in rows, and factor C was composed of three doses of glyphosate (0.975, 1.625 and 2.275 kg ha-1 of acid equivalent). For determination of weed suppression, assessment of biomass yield and soil cover was performed, by brachiaria and weeds, at 30, 60, 90, 120 and 258 days after sowing. Visual assessment of the desiccation efficiency at 7 and 14 days after herbicide application was performed. It is concluded that embedding Urochloa seeds stands out in relation to sowing in the soil surface. Urochloa ruziziensis is more efficient in the dry weight yield, weed suppression, in addition to being more sensitive to glyphosate herbicide.