121 resultados para Damage tolerance, composites, VCCT, CZM
Resumo:
Our objective was to investigate the protective effect of Lawesson's reagent, an H2S donor, against alendronate (ALD)-induced gastric damage in rats. Rats were pretreated with saline or Lawesson's reagent (3, 9, or 27 µmol/kg, po) once daily for 4 days. After 30 min, gastric damage was induced by ALD (30 mg/kg) administration by gavage. On the last day of treatment, the animals were killed 4 h after ALD administration. Gastric lesions were measured using a computer planimetry program, and gastric corpus pieces were assayed for malondialdehyde (MDA), glutathione (GSH), proinflammatory cytokines [tumor necrosis factor (TNF)-α and interleukin (IL)-1β], and myeloperoxidase (MPO). Other groups were pretreated with glibenclamide (5 mg/kg, ip) or with glibenclamide (5 mg/kg, ip)+diazoxide (3 mg/kg,ip). After 1 h, 27 µmol/kg Lawesson's reagent was administered. After 30 min, 30 mg/kg ALD was administered. ALD caused gastric damage (63.35±9.8 mm2); increased levels of TNF-α, IL-1β, and MDA (2311±302.3 pg/mL, 901.9±106.2 pg/mL, 121.1±4.3 nmol/g, respectively); increased MPO activity (26.1±3.8 U/mg); and reduced GSH levels (180.3±21.9 µg/g). ALD also increased cystathionine-γ-lyase immunoreactivity in the gastric mucosa. Pretreatment with Lawesson's reagent (27 µmol/kg) attenuated ALD-mediated gastric damage (15.77±5.3 mm2); reduced TNF-α, IL-1β, and MDA formation (1502±150.2 pg/mL, 632.3±43.4 pg/mL, 78.4±7.6 nmol/g, respectively); lowered MPO activity (11.7±2.8 U/mg); and increased the level of GSH in the gastric tissue (397.9±40.2 µg/g). Glibenclamide alone reversed the gastric protective effect of Lawesson's reagent. However, glibenclamide plus diazoxide did not alter the effects of Lawesson's reagent. Our results suggest that Lawesson's reagent plays a protective role against ALD-induced gastric damage through mechanisms that depend at least in part on activation of ATP-sensitive potassium (KATP) channels.
Resumo:
Data on genome damage, lipid peroxidation, and levels of glutathione peroxidase (GPX) in newborns after transplacental exposure to xenobiotics are rare and insufficient for risk assessment. The aim of the current study was to analyze, in an animal model, transplacental genotoxicity, lipid peroxidation, and detoxification disturbances caused by the following drugs commonly prescribed to pregnant women: paracetamol, fluconazole, 5-nitrofurantoin, and sodium valproate. Genome damage in dams and their newborn pups transplacentally exposed to these drugs was investigated using the in vivo micronucleus (MN) assay. The drugs were administered to dams intraperitoneally in three consecutive daily doses between days 12 and 14 of pregnancy. The results were correlated, with detoxification capacity of the newborn pups measured by the levels of GPX in blood and lipid peroxidation in liver measured by malondialdehyde (HPLC-MDA) levels. Sodium valproate and 5-nitrofurantoin significantly increased MN frequency in pregnant dams. A significant increase in the MN frequency of newborn pups was detected for all drugs tested. This paper also provides reference levels of MDA in newborn pups, according to which all drugs tested significantly lowered MDA levels of newborn pups, while blood GPX activity dropped significantly only after exposure to paracetamol. The GPX reduction reflected systemic oxidative stress, which is known to occur with paracetamol treatment. The reduction of MDA in the liver is suggested to be an unspecific metabolic reaction to the drugs that express cytotoxic, in particular hepatotoxic, effects associated with oxidative stress and lipid peroxidation.
Resumo:
The effect of an adventure sprint race (ASR) on T-cell proliferation, leukocyte count and muscle damage was evaluated. Seven young male runners completed an ASR in the region of Serra do Espinhaço, Brazil. The race induced a strong leukocytosis (6.22±2.04×103 cells/mm3 beforevs 14.81±3.53×103 cells/mm3after the race), marked by a significant increase of neutrophils and monocytes (P<0.05), but not total lymphocytes, CD3+CD4+ or CD3+CD8+ cells. However, the T-cell proliferative response to mitogenic stimulation was increased (P=0.025) after the race, which contradicted our hypothesis that ASR, as a high-demand competition, would inhibit T-cell proliferation. A positive correlation (P=0.03, r=0.79) was observed between the proliferative response of lymphocytes after the race and the time to complete the race, suggesting that the proliferative response was dependent on exercise intensity. Muscle damage was evident after the race by increased serum levels of aspartate amino transferase (24.99±8.30 vs 50.61±15.76 U/L, P=0.003). The results suggest that humoral factors and substances released by damaged muscle may be responsible for lymphocyte activation, which may be involved in muscle recovery and repair.
Resumo:
The antioxidant effects of Caryocar brasiliense Camb, commonly known as the pequi fruit, have not been evaluated to determine their protective effects against oxidative damage in lung carcinogenesis. In the present study, we evaluated the role of pequi fruit against urethane-induced DNA damage and oxidative stress in forty 8-12 week old male BALB/C mice. An in vivo comet assay was performed to assess DNA damage in lung tissues and changes in lipid peroxidation and redox cycle antioxidants were monitored for oxidative stress. Prior supplementation with pequi oil or its extract (15 µL, 60 days) significantly reduced urethane-induced oxidative stress. A protective effect against DNA damage was associated with the modulation of lipid peroxidation and low protein and gene expression of nitric oxide synthase. These findings suggest that the intake of pequi fruit might protect against in vivo genotoxicity and oxidative stress.
Resumo:
The timing and mechanisms of protection by hyperbaric oxygenation (HBO) in hypoxic-ischemic brain damage (HIBD) have only been partially elucidated. We monitored the effect of HBO on the mitochondrial function of neuronal cells in the cerebral cortex of neonatal rats after HIBD. Neonatal Sprague-Dawley rats (total of 360 of both genders) were randomly divided into normal control, HIBD, and HIBD+HBO groups. The HBO treatment began immediately after hypoxia-ischemia (HI) and continued once a day for 7 consecutive days. Animals were euthanized 0, 2, 4, 6, and 12 h post-HI to monitor the changes in mitochondrial membrane potential (ΔΨm) occurring soon after a single dose of HBO treatment, as well as 2, 3, 4, 5, 6, and 7 days post-HI to study ΔΨm changes after a series of HBO treatments. Fluctuations in ΔΨm were observed in the ipsilateral cortex in both HIBD and HIBD+HBO groups. Within 2 to 12 h after HI insult, the ΔΨm of the HIBD and HIBD+HBO groups recovered to some extent. A secondary drop in ΔΨm was observed in both groups during the 1-4 days post-HI period, but was more severe in the HIBD+HBO group. There was a secondary recovery of ΔΨm observed in the HIBD+HBO group, but not in the HIBD group, during the 5-7 days period after HI insult. HBO therapy may not lead to improvement of neural cell mitochondrial function in the cerebral cortex in the early stage post-HI, but may improve it in the sub-acute stage post-HI.
Resumo:
The influence of ethanolic extracts of Annona crassiflora on the activities of hepatic antioxidant enzymes was examined. Extracts of A. crassiflora seeds and peel were administered orally (50 mg of galic acid equivalents.kg-1) to Wistar rats for 14 consecutive days followed by a single oral dose of carbon tetrachloride (CCl4, 2 g.kg-1). Lipid peroxidation and the activities of hepatic catalase (CAT), cytochromes P450 (CP450) and b5, glutathione peroxidase (GPx), glutathione reductase (GRed), superoxide dismutase (SOD), and the content of glutathione equivalents (GSH) were evaluated. The treatment with CCl4 increased lipid peroxidation, the level of GSH equivalents and the content of cytochrome b5 by 44, 140 and 32%, respectively, with concomitant reductions of 23, 34 and 39% in the activities of CAT, SOD, and CP450, respectively. The treatment with A. crassiflora seeds and peel extracts alone inhibited lipid peroxidation by 27 and 22%, respectively without affecting the CP450 content. The pretreatment with the A. crassiflora extracts prevented the lipid peroxidation, the increase in GSH equivalents and the decrease in CAT activity caused by CCl4, but it had no effect on the CCl4-mediated changes in CP450 and b5 and SOD. These results show that A. crassiflora seeds and peel contain antioxidant activity in vivo that could be of potential therapeutic use.
Resumo:
The purpose of this study was to investigate and model the water absorption process by corn kernels with different levels of mechanical damage Corn kernels of AG 1510 variety with moisture content of 14.2 (% d.b.) were used. Different mechanical damage levels were indirectly evaluated by electrical conductivity measurements. The absorption process was based on the industrial corn wet milling process, in which the product was soaked with a 0.2% sulfur dioxide (SO2) solution and 0.55% lactic acid (C3H6O3) in distilled water, under controlled temperatures of 40, 50, 60, and 70 ºC and different mechanical damage levels. The Peleg model was used for the analysis and modeling of water absorption process. The conclusion is that the structural changes caused by the mechanical damage to the corn kernels influenced the initial rates of water absorption, which were higher for the most damaged kernels, and they also changed the equilibrium moisture contents of the kernels. The Peleg model was well adjusted to the experimental data presenting satisfactory values for the analyzed statistic parameters for all temperatures regardless of the damage level of the corn kernels.
Resumo:
Yellowfin tuna has a high level of free histidine in their muscle, which can lead to histamine formation by microorganisms if temperature abuse occurs during handling and further processing. The objective of this study was to measure levels of histamine in damaged and undamaged thawed muscle to determine the effect of physical damage on the microbial count and histamine formation during the initial steps of canning processing and to isolate and identify the main histamine-forming microorganisms present in the flesh of yellowfin tuna. Total mesophilic and psicrophilic microorganisms were determined using the standard plate method. The presence of histamine-forming microorganisms was determined in a modified Niven's agar. Strains were further identified using the API 20E kit for enterobacteriaceae and Gram-negative bacilli. Physically damaged tuna did not show higher microbiological contamination than that of undamaged muscle tuna. The most active histamine-forming microorganism present in tuna flesh was Morganella morganii. Other decarboxylating microorganisms present were Enterobacter agglomerans and Enterobacter cloacae. Physical damage of tune during catching and handling did not increase the level of histamine or the amount of microorganisms present in tuna meat during frozen transportation, but they showed a higher risk of histamine-forming microorganism growth during processing.
Resumo:
The occurrence of green soybean seed due to forced maturation or premature plant death caused by drought or foliar and/or root diseases has been common in several Brazilian production areas. Physiological quality of seed lots with green seed may have their germination and vigor potentials affected and therefore discarded by the grain industry. The objective of this experiment was to determine the maximum tolerated level of green seed in soybean seed lots, which is information of major importance for seed producers when taking the decision whether to sell these lots. Soybean seed of the cultivars CD 206, produced in Ubirata, Parana, and FMT Tucunare, produced in Alto Garças, Mato Grosso, were used in the study. Green seed and yellow seed of both cultivars were mixed in the following proportions: 0%, 3%, 6%, 9%, 12%, 15%, 20%, 30%, 40%, 50%, 75% and 100%. Seed quality was evaluated by the germination, accelerated aging, tetrazolium and electrical conductivity tests. The contents of a, b and total chlorophyll in the seed were also determined. A complete randomized block design in a factorial scheme (two cultivars x 12 levels of green seed) was used. Seed quality was negatively affected and chlorophyll contents incremented with the increase in the percentage of green seed. Seed germination, viability and vigor, measured by the accelerated aging test, were not reduced with levels of up to 3% green seed, for both cultivars. Levels above 6% green seed significantly reduced the quality of the seed. The quality of seed lots with 9% or more green seed was significantly reduced to the point that their commercialization is not recommended.
Resumo:
The aim of this study was to assess the desiccation tolerance and DNA integrity in Eugenia pleurantha seeds dehydrated to different moisture contents (MCs). Seeds extracted from mature fruits were submmited to drying in silica gel and evaluated at every five percentual points of decrease from the initial MC (35.5%, fresh weight basis). The effects of dehydration on seeds were verified through germination tests and DNA integrity assessment. Undried seeds achieved 87% germination, value reduced to 36% after being dried to 9.8% MC. When dried slightly more, to 7.4% MC, seeds were no longer able to germinate, suggesting an intermediate behavior in relation to desiccation tolerance. It was observed DNA degradation in seeds with 7.4% MC, which might have contributed to the loss of seed germination.
Resumo:
The aim of this study was to assess the desiccation tolerance and DNA integrity in Eugenia pleurantha seeds dehydrated to different moisture contents (MCs). Seeds extracted from mature fruits were dried in silica gel and evaluated at every five percentual points of decrease from the initial MC (35.5%, fresh weight basis). The effects of dehydration on seeds were verified through germination tests and DNA integrity assessment. Undried seeds achieved 87% germination, value reduced to 36% after being dried to 9.8% MC. When dried slightly more, to 7.4% MC, seeds were no longer able to germinate, suggesting an intermediate behavior in relation to desiccation tolerance. DNA degradation was observed in seeds with 7.4% MC, which might have contributed to the loss of seed germination.
Resumo:
Seeds of Magnolia ovata were dried to different water contents to assess the viability and transcript abundance of genes related to seed development, cell cycle, cytoskeleton and desiccation tolerance.The expression of development, cell cycle and cytoskeleton relative genes (ABI3, CDC2-like and ACT2) alone could not explain the germination behaviour of M. ovata seeds in relation to drying damage. Irrespective of their initial water content, the seeds performed in the same way during the initial period of germination and the deleterious effects of desiccation only occurred in later stages. Expression of PKABA1, sHSP17.5 and 2-Cys-PRX did not show a relationship with desiccation. However, the expression patterns of PKABA1 and sHSP17.5 suggested the participation of these genes in protective mechanisms during the imbibition of M. ovata seeds.
Resumo:
The X-ray test is a precise, fast and non-destructive method to detect mechanical damage in seeds. In the present study, the efficiency of X-ray analysis in identifying the extent of mechanical damage in sweet corn seeds and its relationship with germination and vigor was evaluated. Hybrid 'SWB 551' (sh2) seeds with round (R) and flat (F) shapes were classified as large (L), medium (M1, M2 and M3) and small (S), using sieves with round and oblong screens. After artificial exposure to different levels of damage (0, 1, 3, 5 and 7 impacts), seeds were X-rayed (15 kV, 5 min) and submitted to germination (25 °C/5 days) and cold (10 °C/7 days) tests. Digital images of normal and abnormal seedlings and ungerminated seeds from germination and cold tests were jointly analyzed with the seed X-ray images. Results showed that damage affecting the embryonic axis resulted in abnormal seedlings or dead seeds in the germination and cold tests. The X-ray analysis is efficient for identifying mechanical damage in sweet corn seeds, allowing damage severity to be associated with losses in germination and vigor.