121 resultados para CMC (carboxymethyl cellulose)
Resumo:
Leaves of Alchornea triplinervia (Spreng.) Muell. Arg. were submerged in a stream in an Atlantic Rainforest in São Paulo state, Brazil, from July/1988 to June/1989 and from July/1989 to May/1990. Fungi were isolated by the leaf disks washing technique followed by plating on culture media and also by using baiting techniques (using substrates with chitin, keratin and cellulose), what resulted on 565 fungal registers corresponding to 81 taxa. The most common species found during this study of the fungal succession were Trichoderma viride Pers. ex S.F. Gray and Fusarium oxysporum Schlecht emend. Snyd. & Hans. (23 registers), Penicillium hirsutum Dierckx (21 registers), Fusarium solani (Mart.) Appel & Wollenw. emend. Snyd. & Hans. (17), followed by 14 registers of: Cylindrocladium scoparium Morgan, Triscelophorus monosporus Ingold and Polychytrium aggregatum Ajello. Although the monthly obtained mycota had been composed by species of different taxonomic groups, the fungal succession was defined by the initial presence of typical terrestrial leaf inhabiting fungi (mostly Deuteromycotina), followed by species of Mastigomycotina and Zygomycotina. Combining culture methods and baiting techniques, it was possible to verify the presence of terrestrial fungi on the decomposition of submerged leaves and the importance of zoosporic fungi in the fungal succession. This is the first paper about the fungal succession on the decomposition of leaves submerged in a lotic ecosystem in Brazil.
Resumo:
Lignin, after cellulose, is the second most abundant biopolymer on Earth, accounting for 30% of the organic carbon in the biosphere. It is considered an important evolutionary adaptation of plants during their transition from the aquatic environment to land, since it bestowed the early tracheophytes with physical support to stand upright and enabled long-distance transport of water and solutes by waterproofing the vascular tissue. Although essential for plant growth and development, lignin is the major plant cell wall component responsible for biomass recalcitrance to industrial processing. The fact that lignin is a non-linear aromatic polymer built with chemically diverse and poorly reactive linkages and a variety of monomer units precludes the ability of any single enzyme to properly recognize and degrade it. Consequently, the use of lignocellulosic feedstock as a renewable and sustainable resource for the production of biofuels and bio-based materials will depend on the identification and characterization of the factors that determine plant biomass recalcitrance, especially the highly complex phenolic polymer lignin. Here, we summarize the current knowledge regarding lignin metabolism in plants, its effect on biomass recalcitrance and the emergent strategies to modify biomass recalcitrance through metabolic engineering of the lignin pathway. In addition, the potential use of sugarcane as a second-generation biofuel crop and the advances in lignin-related studies in sugarcane are discussed.
Resumo:
Hb Köln was identified by DNA analysis in a Brazilian patient. A four-year old Brazilian female, with jaundice since birth, presented an abnormal band, between A2 and S, in hemoglobin electrophoresis on a cellulose acetate membrane, and a band with electrophoretic migration similar to Hb C on agar gel. Thermic instability and isopropanol precipitation tests were positive. Heinz bodies were observed in the patients peripheral blood. Sequencing of the three exons of the b globin gene detected a transition from G to A in the first position of codon 98. This alteration does not create or abolish any known restriction site. In this case, confirmation of the mutation was accomplished by allele-specific oligonucleotide hybridization, which is a simple and fast identification method when the clinical data and hematological and electrophoretic patterns are suggestive of Hb Köln.
Viscosity of gums in vitro and their ability to reduce postprandial hyperglycemia in normal subjects
Resumo:
Experiments were carried out in vitro with three viscous polysaccharides (guar gum, pectin, and carboxymethylcellulose (CMC)) of similar initial viscosity submitted to conditions that mimic events occurring in the stomach and duodenum, and their viscosity in these situations was compared to their actions on postprandial hyperglycemia in normal human subjects. Guar gum showed greater viscosity than the other gums during acidification and/or alkalinization and also showed larger effects on plasma glucose levels (35% reduction in maximum rise in plasma glucose) and on the total area under the curve of plasma glucose (control: 20,314 ± 1007 mg dl-1 180 min-1 vs guar gum: 18,277 ± 699 mg dl-1 180 min-1, P<0.01). Pectin, which showed a marked reduction in viscosity at 37oC and after events mimicking those that occur in the stomach and duodenum, did not have a significant effect on postprandial hyperglycemia. The performance of viscosity and the glycemia response to CMC were at an intermediate level between guar gum and pectin. In conclusion, these data suggest that temperature, the process of acidification, alkalinization and exposure to intestinal ions induce different viscosity changes in gums having similar initial viscosity, establishing a direct relationship between a minor decrease of gum viscosity in vitro and a reduction of postprandial hyperglycemia
Resumo:
A new metalloendopeptidase was purified to apparent homogeneity from a homogenate of normal human liver using successive steps of chromatography on DEAE-cellulose, hydroxyapatite and Sephacryl S-200. The purified enzyme hydrolyzed the Pro7-Phe8 bond of bradykinin and the Ser25-Tyr26 bond of atrial natriuretic peptide. No cleavage was produced in other peptide hormones such as vasopressin, oxytocin or Met- and Leu-enkephalin. This enzyme activity was inhibited by 1 mM divalent cation chelators such as EDTA, EGTA and o-phenanthroline and was insensitive to 1 µM phosphoramidon and captopril, specific inhibitors of neutral endopeptidase (EC 3.4.24.11) and angiotensin-converting enzyme (EC 3.4.15.1), respectively. With Mr 85 kDa, the enzyme exhibits optimal activity at pH 7.5. The high affinity of this endopeptidase for bradykinin (Km = 10 µM) and for atrial natriuretic peptide (Km = 5 µM) suggests that it may play a physiological role in the inactivation of these circulating hypotensive peptide hormones.
Resumo:
The aminopeptidase activity of Phaseolus vulgaris seeds was measured using L-Leu-p-nitroanilide and the L-aminoacyl-ß-naphthylamides of Leu, Ala, Arg and Met. A single peak of aminopeptidase activity on Leu-ß-naphthylamide was eluted at 750 µS after gradient elution chromatography on DEAE-cellulose of the supernatant of a crude seed extract. The effluent containing enzyme activity was applied to a Superdex 200 column and only one peak of aminopeptidase activity was obtained. SDS-polyacrylamide gel electrophoresis (10%) presented only one protein band with molecular mass of 31 kDa under reducing and nonreducing conditions. The aminopeptidase has an optimum pH of 7.0 for activity on all substrates tested and the highest Vmax/KM ratio for L-Leu-ß-naphthylamide. The enzyme activity was increased 40% by 0.15 M NaCl, inhibited 94% by 2.0 mM Zn2+, inhibited 91% by sodium p-hydroxymercuribenzoate and inhibited 45% by 0.7 mM o-phenanthroline and 30 µM EDTA. Mercaptoethanol (3.3 mM), dithioerythritol (1.7 mM), Ala, Arg, Leu and Met (70 µM), p-nitroaniline (0.25 mM) and ß-naphthylamine (0.53 mM) had no effect on enzyme activity when assayed with 0.56 mM of substrate. Bestatin (20 µM) inhibited 18% the enzyme activity. The aminopeptidase activity in the seeds decayed 50% after two months when stored at 4oC and room temperature. The enzyme is leucyl aminopeptidase metal- and thiol group-dependent.
Resumo:
Nosocomial dissemination of glycopeptide-resistant enterococci represents a major problem in hospitals worldwide. In Brazil, the dissemination among hospitals in the city of São Paulo of polyclonal DNA profiles was previously described for vancomycin-resistant Enterococcus faecium. We describe here the dissemination of VanA phenotype E. faecalis between two hospitals located in different cities in the State of São Paulo. The index outbreak occurred in a tertiary care university hospital (HCUSP) in the city of São Paulo and three years later a cluster caused by the same strain was recognized in two patients hospitalized in a private tertiary care hospital (CMC) located 100 km away in the interior of the state. From May to July 1999, 10 strains of vancomycin-resistant E. faecalis were isolated from 10 patients hospitalized in the HCUSP. The DNA genotyping using pulsed-field gel electrophoresis (PFGE) showed that all isolates were originated from the same clone, suggesting nosocomial dissemination. From May to July 2002, three strains of vancomycin-resistant E. faecalis were isolated from two patients hospitalized in CMC and both patients were colonized by the vancomycin-resistant Enterococcus in skin lesions. All isolates from CMC and HCUSP were highly resistant to vancomycin and teicoplanin. The three strains from CMC had minimum inhibitory concentration >256 µg/ml for vancomycin, and 64 (CMC 1 and CMC 2) and 96 µg/ml (CMC 3) for teicoplanin, characterizing a profile of VanA resistance to glycopeptides. All strains had the presence of the transposon Tn1546 detected by PCR and were closely related when typed by PFGE. The dissemination of the E. faecalis VanA phenotype among hospitals located in different cities is of great concern because E. faecalis commonly colonizes the gastrointestinal tract of patients and healthy persons for periods varying from weeks to years, which, together with the persistence of vancomycin-resistant Enterococcus in hospital rooms after standard cleaning procedures, increases the risk of the dissemination and reservoir of the bacteria.
Resumo:
Glycosaminoglycans (GAGs) participate in a variety of processes in the kidney, and evidence suggests that gender-related hormones participate in renal function. The aim of this study was to analyze the relationship of GAGs, gender, and proteinuria in male and female rats with chronic renal failure (CRF). GAGs were analyzed in total kidney tissue and 24-h urine of castrated (c), male (M), and female (F) Wistar control (C) rats (CM, CMc, CF, CFc) and after 30 days of CRF induced by 5/6 nephrectomy (CRFM, CRFMc, CRFF, CRFFc). Total GAG quantification and composition were determined using agarose and polyacrylamide gel electrophoresis, respectively. Renal GAGs were higher in CF compared to CM. CRFM presented an increase in renal GAGs, heparan sulfate (HS), and proteinuria, while castration reduced these parameters. However, CRFF and CRFFc groups showed a decrease in renal GAGs concomitant with an increase in proteinuria. Our results suggest that, in CRFM, sex hormones quantitatively alter GAGs, mainly HS, and possibly the glomerular filtration barrier, leading to proteinuria. The lack of this response in CRFMc, where HS did not increase, corroborates this theory. This pattern was not observed in females. Further studies of CRF are needed to clarify gender-dependent differences in HS synthesis.
Resumo:
Neste trabalho, o uso de hidrocolóides constituídos de pectina (1%), carboximetilcelulose (CMC 0.5%) e amido gelatinizado (5%) adicionados ou não de sacarose (15%) e nitrato de cálcio (0.5%) foi testado com o objetivo de se avaliar a influência destes sistemas sobre os parâmetros de qualidade de melões congelados com diferentes velocidades de resfriamento. Foram avaliados parâmetros tais como sólidos solúveis totais, perda de fluido celular por exsudação e capacidade de retenção de água após o descongelamento. As rupturas do tecido causadas pelo crescimento de cristais de gelo foram visualizadas por fotomicrografias obtidas por microscopia ótica e as disposições dos sistemas de hidrocolóides junto a parede celular puderam ser analisadas por microscopia eletrônica de varredura (SEM) do material congelado e liofilizado. Os parâmetros avaliados e as análises microscópicas da estrutura celular permitiram estabelecer alguns efeitos interativos entre os sistemas de hidrocolóides e a parede celular, responsáveis pela obtenção de estruturas menos danificadas. Estudos histológicos por microscopia ótica permitiram verificar os efeitos das interações sobre a resistência da parede ao rompimento celular. Os tratamentos com sistemas constituídos de amido gelatinizado e pectina, adicionados de sacarose e íons cálcio foram os que apresentaram os melhores resultados na manutenção da estrutura, menor perda de fluido e melhor textura do material descongelado. Os tratamentos com cálcio foram os principais responsáveis pela manutenção da firmeza dos frutos.
Resumo:
The soluble and insoluble cotyledon (SPF-Co and IPF-Co) and tegument (SPF-Te and IPF-Te) cell wall polymer fractions of common beans (Phaseolus vulgaris) were isolated using a chemical-enzymatic method. The sugar composition showed that SPF-Co was constituted of 38.6% arabinose, 23.4% uronic acids, 12.7% galactose, 11.2% xylose, 6.4% mannose and 6.1% glucose, probably derived from slightly branched and weakly bound polymers. The IPF-Co was fractionated with chelating agent (CDTA) and with increasing concentrations of NaOH. The bulk of the cell wall polymers (29.4%) were extracted with 4.0M NaOH and this fraction contained mainly arabinose (55.0%), uronic acid (18.9%), glucose (10.7%), xylose (10.3%) and galactose (3.4%). About 8.7% and 10.6% of the polymers were solubilised with CDTA and 0.01M NaOH respectively and were constituted of arabinose (52.0 and 45.9%), uronic acids (25.8 and 29.8%), xylose (9.6 and 10.2%), galactose (6.1 and 3.9%) and glucose (6.5 and 3.8%). The cell wall polymers were also constituted of small amounts (5.6 and 7.2%) of cellulose (CEL) and of non-extractable cell wall polymers (NECW). About 16.8% and 17.2% of the polymers were solubilised with 0.5 and 1.0M NaOH and contained, respectively, 92.1 and 90.7% of glucose derived from starch (IST). The neutral sugar and polymers solubilization profiles showed that weakly bound pectins are present mainly in SPF-Co (water-soluble), CDTA and 0.01-0.1M NaOH soluble fractions. Less soluble, highly cross-linked pectins were solubilised with 4.0M NaOH. This pectin is arabinose-rich, probably highly branched and has a higher molecular weight than the pectin present in SPF-Co, CDTA and 0.01-0.1M NaOH fractions.
Resumo:
O trabalho teve como objetivo avaliar o efeito sensorial da adição de polpa, carboximetilcelulose (CMC) e goma arábica (fibra) nos atributos e aceitação de refrescos de laranja. Utilizou-se uma amostra padrão e outras formuladas com polpa, CMC, fibra e todos os ingredientes. Foram realizadas análises físico-químicas (pH, acidez titulável, sólidos solúveis, vitamina C, cor e turbidez), e as amostras também foram caracterizadas pela técnica de Perfil Livre. Na análise descritiva utilizou-se 14 provadores e, para a avaliação dos resultados foi empregada a Análise Procrustes Generalizada. As amostras caracterizadas como diferentes (padrão, CMC, fibra) foram submetidas a teste de aceitação. Os refrescos foram caracterizados e separados com base em atributos de aparência (cor laranja e turbidez), aroma (adocicado e laranja), sabor (doce, laranja e ácido) e textura (viscosidade). O padrão e a amostra com polpa, que não foram diferenciadas sensorialmente, apresentaram menor intensidade de cor laranja e turbidez, e foram consideradas menos encorpadas e mais ácidas. As amostras com CMC e fibra se diferenciaram do padrão e apresentaram comportamento intermediário. A formulação com todos os ingredientes apresentou características opostas: maior intensidade de cor e turbidez, mais encorpada e menos ácida. As amostras com CMC e fibra foram mais aceitas que o padrão.
Resumo:
Pleurotus ostreatus, worldwide known as oyster mushroom, was cultivated in banana straw using inocula produced by two different processes - liquid inoculum and the traditionally used solid inoculum. Different ratios (5, 10, 15, and 20%) were tested. Biological efficiency, yield, productivity, organic matter loss, and moisture of fruiting bodies as well as physical-chemical characteristics of banana straw were studied. Significant differences were observed for cellulose, lignin, and hemicellulose content between one and two harvests for both solid and liquid inocula. It was observed that P. ostreatus growth promoted higher degradation of lignin (80.36%), followed by hemicellulose (78.64%) and cellulose (60.37%). Significant differences between one and two harvests were also observed for the production parameters (biological efficiency and yield) for both kinds of inocula, liquid and solid. However, significant differences in productivity between harvests were observed only for solid inoculum.
Resumo:
The coating of papayas with Cassava Starch (CS) and carboxymethyl starch (CMS) is an alternative to extend the shelf life of these fruits. This study evaluated the effect of the three different levels of CS and CMS (1, 3, and 5%) on sensory characteristics of papayas during storage. Nine selected and trained assessors evaluated 13 sensory attributes using the Multiple Comparison Test. The appearance and flavor attributes of the papayas treated with CS and CMS were compared to the control or reference sample (R - fruit without coating) using a nine-point scale, which varied from 1: less intense than R; 5: equal to R; 9: more intense than R. The samples were coded with three digit numbers and evaluated with repetition by a panel of assessors. In general, appearance was more affected by the coatings than flavor. Fruits coated with 3 and 5% of both coatings kept the green color longer than the other coatings concentrations, and at 5% the color of the fruits was less uniform on the last evaluation day. The 3 and 5% CS coating gave greater brightness to the fruits. 5% CMS favored the presence of fungi and damaged the fruit surface at the 14th day of storage. The CS coating at 5% presented peeled surface during all experimental time. Changes in fruits flavor were perceived at the 12th and 14th days of storage. A less characteristic flavor and a bitter taste were noticed in the fruits coated with CS and CMS at 5% at the 12th day of storage.
Resumo:
The degermination of corn grains by dry milling generates 5% of a fibrous residue. After segregation and micronization, corn bran becomes a potential source of dietary fiber consumption. However, its effect on iron bioavailability has not been reported in the literature. The objective of the present study was to determine the nutritional composition of corn bran and its effects on iron bioavailability using the hemoglobin depletion-repletion method in rats. The animals were divided into two groups: cellulose (control) and corn bran (experimental). The bran had high content of total dietary fiber, especially the insoluble fraction, and low phytate content. Hemoglobin uptake did not differ between groups at the end of repletion period, and the iron relative bioavailability value of the corn bran diet was 104% in comparison to that of the control group. The product evaluated proved to be a potential source of dietary fiber and it showed no negative effects on iron bioavailability.
Resumo:
Abstract In Turkey and several Middle East countries' people consume “leblebi” which is a traditional snack food made from chickpeas (Cicer arietinum L.). Chickpea products are highly nutritive and a cheap food for human consumption and have become an essential part of daily diets in the world. The present study aims to determine the chemical, nutritional and dietary composition of fifty leblebi samples marketed in Turkey. Protein values of the leblebi ranged from 19.4 to 23.9% dehulled and 20.3 to 20.8% for nondehulled leblebi while a value of 19.1% was recorded for chickpeas. Mineral results showed that Potassium (K) was the most abundant element in leblebi ranging from 6514 to 14431 mg/kg. The amount of dietary components neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL) and cellulose did not vary much between the samples analyzed.