125 resultados para Active Oxygen


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Horne-Östberg questionnaire partly covers some factors that may be important determinants of peak time and characterize patterns of behavior. We conducted a study for the evaluation of self-reported behavioral states (hunger sensation, availability for study, physical exercise, solving daily problems, and time preferences) as expressions of underlying cyclic activity. Three hundred and eighteen community subjects without history of medical, psychiatric, or sleep disorders were evaluated in a cross-sectional design. A self-report about daily highest level of activity was used to categorize individuals into morning, evening, and indifferently active. Time-related behavioral states were evaluated with 23 visual analog questions. The responses to most analogic questions were significantly different between morning and evening active subjects. Logistic regression analysis identified a group of behaviors more strongly associated with the self-reported activity pattern (common wake up time, highest subjective fatigue, as well as wake up, bedtime, exercise and study preferences). These findings suggested that the patterns of activity presented by normal adults were related to specific common behavioral characteristics that may contribute to peak time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The position of the oxygen dissociation curve (ODC) is modulated by 2,3-diphosphoglycerate (2,3-DPG). Decreases in 2,3-DPG concentration within the red cell shift the curve to the left, whereas increases in concentration cause a shift to the right of the ODC. Some earlier studies on diabetic patients have reported that insulin treatment may reduce the red cell concentrations of 2,3-DPG, causing a shift of the ODC to the left, but the reports are contradictory. Three groups were compared in the present study: 1) nondiabetic control individuals (N = 19); 2) insulin-dependent diabetes mellitus (IDDM) patients (on insulin treatment) (N = 19); 3) non-insulin-dependent diabetes mellitus (NIDDM) patients using oral hypoglycemic agents and no insulin treatment (N = 22). The overall position of the ODC was the same for the three groups despite an increase of the glycosylated hemoglobin fraction that was expected to shift the ODC to the left in both groups of diabetic patients (HbA1c: control, 4.6%; IDDM, 10.5%; NIDDM, 9.0%). In IDDM patients, the effect of the glycosylated hemoglobin fraction on the position of the ODC appeared to be counterbalanced by small though statistically significant increases in 2,3-DPG concentration from 2.05 (control) to 2.45 µmol/ml blood (IDDM). Though not statistically significant, an increase of 2,3-DPG also occurred in NIDDM patients, while red cell ATP levels were the same for all groups. The positions of the ODC were the same for control subjects, IDDM and NIDDM patients. Thus, the PO2 at 50% hemoglobin-oxygen saturation was 26.8, 28.2 and 28.5 mmHg for control, IDDM and NIDDM, respectively. In conclusion, our data question the idea of adverse side effects of insulin treatment on oxygen transport. In other words, the shift to the left reported by others to be caused by insulin treatment was not detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cardiovascular protective actions of estrogen are partially mediated by a direct effect on the vessel wall. Estrogen is active both on vascular smooth muscle and endothelial cells where functionally competent estrogen receptors have been identified. Estrogen administration promotes vasodilation in humans and in experimental animals, in part by stimulating prostacyclin and nitric oxide synthesis, as well as by decreasing the production of vasoconstrictor agents such as cyclooxygenase-derived products, reactive oxygen species, angiotensin II, and endothelin-1. In vitro, estrogen exerts a direct inhibitory effect on smooth muscle by activating potassium efflux and by inhibiting calcium influx. In addition, estrogen inhibits vascular smooth muscle cell proliferation. In vivo, 17ß-estradiol prevents neointimal thickening after balloon injury and also ameliorates the lesions occurring in atherosclerotic conditions. As is the case for other steroids, the effect of estrogen on the vessel wall has a rapid non-genomic component involving membrane phenomena, such as alteration of membrane ionic permeability and activation of membrane-bound enzymes, as well as the classical genomic effect involving estrogen receptor activation and gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of reactive oxygen species (ROS) by polymorphonuclear leukocytes (PMN) can be induced by immune complexes and is an important component of phagocytosis in the killing of microorganisms, but can also be involved in inflammatory reactions when immune complexes are deposited in tissues. We have observed that fluid-phase IgG can inhibit the generation of ROS by rabbit PMN stimulated with precipitated immune complexes of IgG (ICIgG) in a dose-dependent manner, acting as a modulatory factor in the range of physiological IgG concentrations. This inhibitory effect is compatible with the known affinity (Kd) of monomeric IgG for the receptors involved (FcRII and FcRIII). The presence of complement components in the immune complexes results in a higher stimulation of ROS production. In this case, however, there is no inhibition by fluid-phase IgG. The effect of complement is strongly dependent on the presence of divalent cations (Ca2+ or Mg2+) in the medium, whereas the stimulation of ICIgG (without complement) does not depend on these cations. We have obtained some evidence indicating that iC3b should be the component involved in the effect of complement through interaction with the CR3 receptor. The absence of the inhibitory effect of fluid-phase IgG in ROS production when complement is present in the immune complex shows that complement may be important in vivo not only in the production of chemotactic factors for PMN, but also in the next phase of the process, i.e., the generation of ROS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigated the protective effect of N-acetylcysteine (NAC) against oxygen radical-mediated coronary artery injury. Vascular contraction and relaxation were determined in canine coronary arteries immersed in Kreb's solution (95% O2-5% CO2), incubated or not with NAC (10 mM), and exposed to free radicals (FR) generated by xanthine oxidase (100 mU/ml) plus xanthine (0.1 mM). Rings not exposed to FR or NAC were used as controls. The arteries were contracted with 2.5 µM prostaglandin F2alpha. Subsequently, concentration-response curves for acetylcholine, calcium ionophore and sodium fluoride were obtained in the presence of 20 µM indomethacin. Concentration-response curves for bradykinin, calcium ionophore, sodium nitroprusside, and pinacidil were obtained in the presence of indomethacin plus Nomega-nitro-L-arginine (0.2 mM). The oxidative stress reduced the vascular contraction of arteries not exposed to NAC (3.93 ± 3.42 g), compared to control (8.56 ± 3.16 g) and to NAC group (9.07 ± 4.0 g). Additionally, in arteries not exposed to NAC the endothelium-dependent nitric oxide (NO)-dependent relaxation promoted by acetylcholine (1 nM to 10 µM) was also reduced (maximal relaxation of 52.1 ± 43.2%), compared to control (100%) and NAC group (97.0 ± 4.3%), as well as the NO/cyclooxygenase-independent receptor-dependent relaxation provoked by bradykinin (1 nM to 10 µM; maximal relaxation of 20.0 ± 21.2%), compared to control (100%) and NAC group (70.8 ± 20.0%). The endothelium-independent relaxation elicited by sodium nitroprusside (1 nM to 1 µM) and pinacidil (1 nM to 10 µM) was not affected. In conclusion, the vascular dysfunction caused by the oxidative stress, expressed as reduction of the endothelium-dependent relaxation and of the vascular smooth muscle contraction, was prevented by NAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diseases such as hypertension, atherosclerosis, hyperlipidemia, and diabetes are associated with vascular functional and structural changes including endothelial dysfunction, altered contractility and vascular remodeling. Cellular events underlying these processes involve changes in vascular smooth muscle cell (VSMC) growth, apoptosis/anoikis, cell migration, inflammation, and fibrosis. Many factors influence cellular changes, of which angiotensin II (Ang II) appears to be amongst the most important. The physiological and pathophysiological actions of Ang II are mediated primarily via the Ang II type 1 receptor. Growing evidence indicates that Ang II induces its pleiotropic vascular effects through NADPH-driven generation of reactive oxygen species (ROS). ROS function as important intracellular and intercellular second messengers to modulate many downstream signaling molecules, such as protein tyrosine phosphatases, protein tyrosine kinases, transcription factors, mitogen-activated protein kinases, and ion channels. Induction of these signaling cascades leads to VSMC growth and migration, regulation of endothelial function, expression of pro-inflammatory mediators, and modification of extracellular matrix. In addition, ROS increase intracellular free Ca2+ concentration ([Ca2+]i), a major determinant of vascular reactivity. ROS influence signaling molecules by altering the intracellular redox state and by oxidative modification of proteins. In physiological conditions, these events play an important role in maintaining vascular function and integrity. Under pathological conditions ROS contribute to vascular dysfunction and remodeling through oxidative damage. The present review focuses on the biology of ROS in Ang II signaling in vascular cells and discusses how oxidative stress contributes to vascular damage in cardiovascular disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quinifuryl (MW 449.52), 2-(5'-nitro-2'-furanyl)ethenyl-4-{N-[4'-(N,N-diethylamino)-1'-methylbutyl]carbamoyl} quinoline, is a water soluble representative of a family of 5-nitrofuran-ethenyl-quinoline drugs which has been shown to be highly toxic to various lines of transformed cells in the dark. In the present study, the toxicity of Quinifuryl to P388 mouse leukemia cells was compared in the dark and under illumination with visible light (390-500 nm). Illumination of water solutions of Quinifuryl (at concentrations ranging from 0.09 to 9.0 µg/ml) in the presence of P388 cells resulted in its photodecomposition and was accompanied by elevated cytotoxicity. A significant capacity to kill P388 cells was detected at a drug concentration as low as 0.09 µg/ml. The toxic effect detected at this drug concentration under illumination exceeded the effect observed in the dark by more than three times. Moreover, the general toxic effect of Quinifuryl, which included cell proliferation arrest, was nearly 100%. Both dose- and time-dependent toxic effects were measured under illumination. The LC50 value of Quinifuryl during incubation with P388 cells was ~0.45 µg/ml under illumination for 60 min and >12 µg/ml in the dark. We have demonstrated that the final products of the Quinifuryl photolysis are not toxic, which means that the short-lived intermediates of Quinifuryl photodecomposition are responsible for the phototoxicity of this compound. The data obtained in the present study are the first to indicate photocytotoxicity of a nitroheterocyclic compound and demonstrate the possibility of its application as a photosensitizer drug for photochemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The release of reactive oxygen specie (ROS) by activated neutrophil is involved in both the antimicrobial and deleterious effects in chronic inflammation. The objective of the present investigation was to determine the effect of therapeutic plasma concentrations of non-steroidal anti-inflammatory drugs (NSAIDs) on the production of ROS by stimulated rat neutrophils. Diclofenac (3.6 µM), indomethacin (12 µM), naproxen (160 µM), piroxicam (13 µM), and tenoxicam (30 µM) were incubated at 37ºC in PBS (10 mM), pH 7.4, for 30 min with rat neutrophils (1 x 10(6) cells/ml) stimulated by phorbol-12-myristate-13-acetate (100 nM). The ROS production was measured by luminol and lucigenin-dependent chemiluminescence. Except for naproxen, NSAIDs reduced ROS production: 58 ± 2% diclofenac, 90 ± 2% indomethacin, 33 ± 3% piroxicam, and 45 ± 6% tenoxicam (N = 6). For the lucigenin assay, naproxen, piroxicam and tenoxicam were ineffective. For indomethacin the inhibition was 52 ± 5% and diclofenac showed amplification in the light emission of 181 ± 60% (N = 6). Using the myeloperoxidase (MPO)/H2O2/luminol system, the effects of NSAIDs on MPO activity were also screened. We found that NSAIDs inhibited both the peroxidation and chlorinating activity of MPO as follows: diclofenac (36 ± 10, 45 ± 3%), indomethacin (97 ± 2, 100 ± 1%), naproxen (56 ± 8, 76 ± 3%), piroxicam (77 ± 5, 99 ± 1%), and tenoxicam (90 ± 2, 100 ± 1%), respectively (N = 3). These results show that therapeutic levels of NSAIDs are able to suppress the oxygen-dependent antimicrobial or oxidative functions of neutrophils by inhibiting the generation of hypochlorous acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We tested the hypothesis that the inability to increase cardiac output during exercise would explain the decreased rate of oxygen uptake (VO2) in recent onset, ischemia-induced heart failure rats. Nine normal control rats and 6 rats with ischemic heart failure were studied. Myocardial infarction was induced by coronary ligation. VO2 was measured during a ramp protocol test on a treadmill using a metabolic mask. Cardiac output was measured with a flow probe placed around the ascending aorta. Left ventricular end-diastolic pressure was higher in ischemic heart failure rats compared with normal control rats (17 ± 0.4 vs 8 ± 0.8 mmHg, P = 0.0001). Resting cardiac index (CI) tended to be lower in ischemic heart failure rats (P = 0.07). Resting heart rate (HR) and stroke volume index (SVI) did not differ significantly between ischemic heart failure rats and normal control rats. Peak VO2 was lower in ischemic heart failure rats (73.72 ± 7.37 vs 109.02 ± 27.87 mL min-1 kg-1, P = 0.005). The VO2 and CI responses during exercise were significantly lower in ischemic heart failure rats than in normal control rats. The temporal response of SVI, but not of HR, was significantly lower in ischemic heart failure rats than in normal control rats. Peak CI, HR, and SVI were lower in ischemic heart failure rats. The reduction in VO2 response during incremental exercise in an ischemic model of heart failure is due to the decreased cardiac output response, largely caused by depressed stroke volume kinetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the human central nervous system. Although its etiology is unknown, the accumulation and activation of mononuclear cells in the central nervous system are crucial to its pathogenesis. Chemokines have been proposed to play a major role in the recruitment and activation of leukocytes in inflammatory sites. They are divided into subfamilies on the basis of the location of conserved cysteine residues. We determined the levels of some CC and CXC chemokines in the cerebrospinal fluid (CSF) of 23 relapsing-remitting MS patients under interferon-ß-1a therapy and 16 control subjects using ELISA. MS patients were categorized as having active or stable disease. CXCL10 was significantly increased in the CSF of active MS patients (mean ± SEM, 369.5 ± 69.3 pg/mL) when compared with controls (178.5 ± 29.1 pg/mL, P < 0.05). CSF levels of CCL2 were significantly lower in active MS (144.7 ± 14.4 pg/mL) than in controls (237.1 ± 16.4 pg/mL, P < 0.01). There was no difference in the concentration of CCL2 and CXCL10 between patients with stable MS and controls. CCL5 was not detectable in the CSF of most patients or controls. The qualitative and quantitative differences of chemokines in CSF during relapses of MS suggest that they may be useful as a marker of disease activity and of the mechanisms involved in the pathogenesis of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria increase their outer and inner membrane permeability to solutes, protons and metabolites in response to a variety of extrinsic and intrinsic signaling events. The maintenance of cellular and intraorganelle ionic homeostasis, particularly for Ca2+, can determine cell survival or death. Mitochondrial death decision is centered on two processes: inner membrane permeabilization, such as that promoted by the mitochondrial permeability transition pore, formed across inner membranes when Ca2+ reaches a critical threshold, and mitochondrial outer membrane permeabilization, in which the pro-apoptotic proteins BID, BAX, and BAK play active roles. Membrane permeabilization leads to the release of apoptogenic proteins: cytochrome c, apoptosis-inducing factor, Smac/Diablo, HtrA2/Omi, and endonuclease G. Cytochrome c initiates the proteolytic activation of caspases, which in turn cleave hundreds of proteins to produce the morphological and biochemical changes of apoptosis. Voltage-dependent anion channel, cyclophilin D, adenine nucleotide translocase, and the pro-apoptotic proteins BID, BAX, and BAK may be part of the molecular composition of membrane pores leading to mitochondrial permeabilization, but this remains a central question to be resolved. Other transporting pores and channels, including the ceramide channel, the mitochondrial apoptosis-induced channel, as well as a non-specific outer membrane rupture may also be potential release pathways for these apoptogenic factors. In this review, we discuss the mechanistic models by which reactive oxygen species and caspases, via structural and conformational changes of membrane lipids and proteins, promote conditions for inner/outer membrane permeabilization, which may be followed by either opening of pores or a rupture of the outer mitochondrial membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Brazil, HIV-infected individuals receive drugs (including non-brand name drugs which comprise locally produced generics and drugs that have not been tested in bioequivalence trials) free of charge from the government. The objective of the present study was to evaluate the effectiveness of highly active antiretroviral therapy (HAART) in Rio de Janeiro, Brazil, where non-brand drugs are widely used. For this purpose, we estimated the proportion of subjects with virologic failure (plasma HIV viral load greater than 400 copies/mL at 6 months after initiation of treatment). This was a retrospective cohort study of drug-naive HIV-infected subjects who initiated HAART. Subjects were included in the analysis if they were 18 years of age or older, were treatment naive, started HAART with a minimum of 3 drugs, and had available information on blood plasma HIV-1 viral load after 6 months on therapy. All subjects used antiretrovirals in dosing regimens recommended by the Brazilian National Advisory Committee for Antiretroviral Therapy. Chart reviews were conducted in three settings: at two public health outpatient units, at one clinical trial unit and at one private office. No comparisons of the effectiveness of non-brand name with the effectiveness of brand name drugs were made. We present results for 485 patients; of these, 354 (73%), 55 (11%), and 76 (16%) were seen at the public health outpatient units, private office, and clinical trial unit, respectively. Virologic failure was observed in 119 (25%) of the subjects. This study demonstrates the effectiveness of HAART in a setting where non-brand name drugs are widely used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microenvironment of the tumor plays an important role in facilitating cancer progression and activating dormant cancer cells. Most tumors are infiltrated with inflammatory cells which secrete cytokines such as tumor necrosis factor-a (TNF-a). To evaluate the role of TNF-a in the development of cancer we studied its effects on cell migration with a migration assay. The migrating cell number in TNF-a -treated group is about 2-fold of that of the control group. Accordingly, the expression of E-cadherin was decreased and the expression of vimentin was increased upon TNF-a treatment. These results showed that TNF-a can promote epithelial-mesenchymal transition (EMT) of MCF-7 cells. Further, we found that the expression of Snail, an important transcription factor in EMT, was increased in this process, which is inhibited by the nuclear factor kappa B (NFkB) inhibitor aspirin while not affected by the reactive oxygen species (ROS) scavenger N-acetyl cysteine. Consistently, specific inhibition of NFkB by the mutant IkBa also blocked the TNF-a-induced upregulation of Snail promoter activity. Thus, the activation of NFkB, which causes an increase in the expression of the transcription factor Snail is essential in the TNF-a-induced EMT. ROS caused by TNF-a seemed to play a minor role in the TNF-a-induced EMT of MCF-7 cells, though ROS per se can promote EMT. These findings suggest that different mechanisms might be responsible for TNF-a - and ROS-induced EMT, indicating the need for different strategies for the prevention of tumor metastasis induced by different stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron is an essential metal for all living organisms. However, iron homeostasis needs to be tightly controlled since iron can mediate the production of reactive oxygen species, which can damage cell components and compromise the integrity and/or cause DNA mutations, ultimately leading to cancer. In eukaryotes, iron-regulatory protein 1 (IRP1) plays a central role in the control of intracellular iron homeostasis. This occurs by interaction of IRP1 with iron-responsive element regions at 5' of ferritin mRNA and 3' of transferrin mRNA which, respectively, represses translation and increases mRNA stability. We have expressed IRP1 using the plasmid pT7-His-hIRP1, which codifies for human IRP1 attached to an NH2-terminal 6-His tag. IRP1 was expressed in Escherichia coli using the strategy of co-expressing chaperonins GroES and GroEL, in order to circumvent inclusion body formation and increase the yield of soluble protein. The protein co-expressed with these chaperonins was obtained mostly in the soluble form, which greatly increased the efficiency of protein purification. Metal affinity and FPLC ion exchange chromatography were used in order to obtain highly purified IRP1. Purified protein was biologically active, as assessed by electrophoretic mobility shift assay, and could be converted to the cytoplasmic aconitase form. These results corroborate previous studies, which suggest the use of folding catalysts as a powerful strategy to increase protein solubility when expressing heterologous proteins in E. coli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of chloride in the stabilization of the deoxy conformation of hemoglobin (Hb), the low oxygen affinity state, has been studied in order to identify the nature of this binding. Previous studies have shown that arginines 141α could be involved in the binding of this ion to the protein. Thus, des-Arg Hb, human hemoglobin modified by removal of the α-chain C-terminal residue Arg141α, is a possible model for studies of these interactions. The loss of Arg141α and all the salt bridges in which it participates is associated with subtle structural perturbations of the α-chains, which include an increase in the conformational flexibility and further shift to the oxy state, increasing oxygen affinity. Thus, this Hb has been the target of many studies of structural and functional behavior along with medical applications. In the present study, we describe the biochemical characterization of des-Arg Hb by electrophoresis, high-performance liquid chromatography and mass spectroscopy. The effects of chloride binding on the oxygen affinity and on the cooperativity to des-Arg Hb and to native human hemoglobin, HbA, were measured and compared. We confirm that des-Arg Hb presents high oxygen affinity and low cooperativity in the presence of bound chloride and show that the binding of chloride to des-Arg does not change its functional characteristics as observed with HbA. These results indicate that Arg141α may be involved in the chloride effect on Hb oxygenation. Moreover, they show that these residues contribute to lower Hb oxygen affinity to a level compatible with its biological function.