179 resultados para Acid soils
Resumo:
Phosphorus fractions were determined in soil samples from areas fertilized or not with farmyard cattle manure (FYM) and in samples of FYM used in the semi-arid region of Paraiba state, Brazil. Soil samples were taken from the 0-20; 20-40 and 40-60 cm layers of 18 cultivated areas, which, according to interviews with farmers, had been treated with 12 to 20 t ha-1 FYM annually, for the past 2 to 40 years. Soil samples were also collected from four unfertilized pasture areas as controls. Phosphorus in the soil samples was sequentially extracted with water (Pw), resin (Pres), NaHCO3 (Pi bic and Po bic), NaOH (Pi hid and Po hid), H2SO4 (Pacid) and, finally, by digestion with H2SO4/H2O2 (Presd). Nine FYM samples were extracted with water, resin, Mehlich-1, H2SO4, NaOH or digestion with H2SO4/H2O2, not sequentially, and the extracts analyzed for P. The sampled areas had homogeneous, sandy and P-deficient soils; increases in total soil P (Pt) above the mean value of the control areas (up to 274 mg kg-1 in the 0-20 cm layer of the most P-enriched samples) were therefore attributed to FYM applications, which was the only external P input in the region. Regression analysis was used to study the relationship between soil P fractions and Pt. The Pacid fraction, related to Ca-P forms, showed the greatest increases (p < 0.01) as a result of FYM applications, rising from 8.4 mg kg-1 in a non-fertilized sample to 43.8 mg kg-1 in the sample with the highest Pt content. The sum of Pw, Pres and Pi bic, considered as labile P, showed comparable increases with Pacid, while Pi hid showed the smallest increase due to FYM applications. Organic P forms also increased, more so the fraction Po hid, considered less labile, than the more labile one, Po bic. The residual P fraction was practically half of Pt, independently of the Pt value. Increases in labile P, Pacid and organic P were justified by the high average concentration of Pw (36 %), Pacid (34 %), and Po hid (30 %) in the FYM. Significant changes in the proportion of P forms among soil layers indicated the downward movement of P in organic forms.
Resumo:
Organic matter dynamics and nutrient availability in saline agricultural soils of the State of Guanajuato might provide information for remediation strategies. 14C labeled glucose with or without 200 mg kg-1 of NH4+-N soil was added to two clayey agricultural soils with different electrolytic conductivity (EC), i.e. 0.94 dS m-1 (low EC; LEC) and 6.72 dS m-1 (high EC; HEC), to investigate the effect of N availability and salt content on organic material decomposition. Inorganic N dynamics and production of CO2 and 14CO2 were monitored. Approximately 60 % of the glucose-14C added to LEC soil evolved as 14CO2, but only 20 % in HEC soil after the incubation period of 21 days. After one day, < 200 mg 14C was extractable from LEC soil, but > 500 mg 14C from HEC soil. No N mineralization occurred in the LEC and HEC soils and glucose addition reduced the concentrations of inorganic N in unamended soil and soil amended with NH4+-N. The NO2- and NO3- concentrations were on average higher in LEC than in HEC soil, with exception of NO2- in HEC amended with NH4+-N. It was concluded that increases in soil EC reduced mineralization of the easily decomposable C substrate and resulted in N-depleted soil.
Resumo:
It is well-known that Amazon tropical forest soils contain high microbial biodiversity. However, anthropogenic actions of slash and burn, mainly for pasture establishment, induce profound changes in the well-balanced biogeochemical cycles. After a few years the grass yield usually declines, the pasture is abandoned and is transformed into a secondary vegetation called "capoeira" or fallow. The aim of this study was to examine how the clearing of Amazon rainforest for pasture affects: (1) the diversity of the Bacteria domain evaluated by Polymerase Chain Reaction and Denaturing Gradient Gel Electrophoresis (PCR-DGGE), (2) microbial biomass and some soil chemical properties (pH, moisture, P, K, Ca, Mg, Al, H + Al, and BS), and (3) the influence of environmental variables on the genetic structure of bacterial community. In the pasture soil, total carbon (C) was between 30 to 42 % higher than in the fallow, and almost 47 % higher than in the forest soil over a year. The same pattern was observed for N. Microbial biomass in the pasture was about 38 and 26 % higher than at fallow and forest sites, respectively, in the rainy season. DGGE profiling revealed a lower number of bands per area in the dry season, but differences in the structure of bacterial communities among sites were better defined than in the wet season. The bacterial DNA fingerprints in the forest were stronger related to Al content and the Cmic:Ctot and Nmic:Ntot ratios. For pasture and fallow sites, the structure of the Bacteria domain was more associated with pH, sum of bases, moisture, total C and N and the microbial biomass. In general microbial biomass in the soils was influenced by total C and N, which were associated with the Bacteria domain, since the bacterial community is a component and active fraction of the microbial biomass. Results show that the genetic composition of bacterial communities in Amazonian soils changed along the sequence forest-pasture-fallow.
Resumo:
The biodiversity of rhizobium in soils of the São Francisco Valley is unknown and can be studied using cowpea as trap plants. The objective of this study was to verify the diversity of diazotrophic bacteria that nodulate cowpea in soils of the lower half of the São Francisco River Valley by morphological and genotypic characterization. Seven soil samples (A1, A2, A3, A4, C1, C2 and MC) were collected to capture bacteria associated to five cowpea cultivars (IPA 206, BRS Pujante, BRS Marataoã, Canapu Roxo, and Sempre Verde), in a 5x7 factorial design with three replications. Thirty days after plant emergence, the nodules were collected and the bacteria isolated and analyzed in relation to their growth characteristics in YMA medium. The 581 isolates were grouped in 49 morphologic groups. Of this total, 62.3 % formed colonies in up to three days, 33.4 % grew from the 6th day on, and 4.3 % began to grow 4 to 5 days after incubation. Regarding the formation of acids and alkalis, 63 % acidified the medium, 12 % made it alkaline and 25 % maintained the medium at neutral pH. The highest diversity was observed in the A3 sample and in isolates associated with the cultivars Canapu Roxo and BRS Pujante. Thirty-eight representative isolates were chosen for the genotypic characterization, clustered in four groups based on the restriction analysis of 16s rDNA. This grouping was strongly correlated with the sampling site; 13 rhizobium isolates had an electrophoretic profile distinct from the standard rhizobium strains used in this study.
Resumo:
A sustainable management of soils with low natural fertility on family farms in the humid tropics is a great challenge and overcoming it would be an enormous benefit for the environment and the farmers. The objective of this study was to assess the environmental and agronomic benefits of alley cropping, based on the evaluation of C sequestration, soil quality indicators, and corn yields. Combinations of four legumes were used in alley cropping systems in the following treatments: Clitoria fairchildiana + Cajanus cajan; Acacia mangium + Cajanus cajan; Leucaena leucocephala + Cajanus cajan; Clitoria fairchildiana + Leucaena leucocephala; Leucaena leucocephala + Acacia mangium and a control. Corn was used as a cash crop. The C content was determined in the different compartments of soil organic matter, CEC, available P, base saturation, percentage of water saturation, the period of the root hospitality factor below the critical level and corn yield. It was concluded that alley cropping could substitute the slash and burn system in the humid tropics. The main environmental benefit of alley cropping is the maintenance of a dynamic equilibrium between C input and output that could sustain up to 10 Mg ha-1 of C in the litter layer, decreasing atmospheric CO2 levels. Alley cropping is also beneficial from the agricultural point of view, because it increases base saturation and decreases physical resistance to root penetration in the soil layer 0 - 10 cm, which ensures the increase and sustainability of corn yield.
Resumo:
Phosphogysum (PG) or agricultural gypsum, a solid waste from the phosphate fertilizer industry, is used as soil amendment, especially on soils in the Cerrado region, in Brazil. This material may however contain natural radionuclides and metals which can be transferred to soils, plants and water sources. This paper presents and discusses the results of physical and chemical analyses that characterized samples of PG and compares them to the results found in two typical soils of the Cerrado, a clayey and sandy one. These analyses included: solid waste classification, evaluation of organic matter content and of P, K, Ca, Mg, and Al concentrations and of the mineralogical composition. Natural radionuclides and metal concentrations in PG and soil samples were also measured. Phosphogypsum was classified as Class II A - Not Dangerous, Not Inert, Not Corrosive and Not Reactive. The organic matter content in the soil samples was low and potential acidity high. In the mean, the specific 226Ra activity in the phosphogypsum samples (252 Bq kg-1) was below the maximum level recommended by USEPA, which is 370 Bq kg-1 for agricultural use. In addition, this study verified that natural radionuclides and metals concentrations in PG were lower than in the clayey Oxisol of Sete Lagoas, Minas Gerais, Brazil. These results indicated that the application of phosphogypsum as soil amendment in agriculture would not cause a significant impact on the environment.
Resumo:
Dispersed information on water retention and availability in soils may be compiled in databases to generate pedotransfer functions. The objectives of this study were: to generate pedotransfer functions to estimate soil water retention based on easily measurable soil properties; to evaluate the efficiency of existing pedotransfer functions for different geographical regions for the estimation of water retention in soils of Rio Grande do Sul (RS); and to estimate plant-available water capacity based on soil particle-size distribution. Two databases were set up for soil properties, including water retention: one based on literature data (725 entries) and the other with soil data from an irrigation scheduling and management system (239 entries). From the literature database, pedotransfer functions were generated, nine pedofunctions available in the literature were evaluated and the plant-available water capacity was calculated. The coefficient of determination of some pedotransfer functions ranged from 0.56 to 0.66. Pedotransfer functions generated based on soils from other regions were not appropriate for estimating the water retention for RS soils. The plant-available water content varied with soil texture classes, from 0.089 kg kg-1 for the sand class to 0.191 kg kg-1 for the silty clay class. These variations were more related to sand and silt than to clay content. The soils with a greater silt/clay ratio, which were less weathered and with a greater quantity of smectite clay minerals, had high water retention and plant-available water capacity.
Resumo:
The majority (60 %) of the soils in the Venezuelan Andes are Inceptisols, a large percentage of which are classified as Dystrustepts by the US Soil Taxonomy, Second Edition of 1999. Some of these soils were classified as Humitropepts (high organic - C-OC-soils) and Dystropepts by the Soil Taxonomy prior to 1999, but no equivalent large group was created for high-OC soils in the new Ustepts suborder. Dystrusepts developed on different materials, relief and vegetation. Their properties are closely related with the parent material. Soils developed on transported deposits or sediments have darker and thicker A horizons, a slightly acid reaction, greater CEC and OC contents than upland slope soils. Based on the previous classification into large groups (Humitropepts and Dystropepts) we found that: Humitropepts have a slightly less acid and higher values of CEC than Dystropepts. These properties or characteristics seem to be related to the fact that Humitropepts have a higher clay and OC content than the Dystropepts. Canonical discrimination analysis showed that the variables that discriminate the two great soil groups from each other are OC and silt. Data for Humitropepts are grouped around the OC vector (defining axis 3, principal component analysis), while Dystropepts are associated with the clay and sand vectors, with significant correlation. Given the importance of OC for soil properties, we propose the creation of a new large group named Humustepts for the order Inceptisol, suborder Ustepts.
Resumo:
The amounts of macro (P, K, Ca and Mg) and micronutrients (Cu and Zn) extracted with the Mehlich-1 (M1) solution, by the 1.0 mol L-1 KCl (KCl) and with the 0.1 mol L-1 HCl (HCl) for representative soil types of the Rio Grande do Sul state (Brazil) were compared with those extracted with the Mehlich-1 solution determined with the inductively coupled plasma optical emission spectroscopy (ICP). The amounts of nutrients extracted by the different methods showed high correlation coefficients. On average, the Mehlich-1 solution extracted similar amounts of P, determined with colorimetric and ICP methods, and, K determined with emission and ICP. The amounts of Ca and Mg extracted with the Mehlich-1 solution, determined by ICP, were similar to those extracted with the KCl solution determined by the atomic absorption spectrophotometry. The amounts of Cu and Zn extracted with the Mehlich-1 solution, determined by the ICP, were higher than those extracted with the 0.1 mol L-1 HCl determined by the atomic absorption spectrophotometry. The results indicate that the Mehlich-1 solution and ICP can be used for simultaneous multielement extraction and determination for Southern Brazilian soils. However, a conversion factor for values interpretation is needed. The use of the conversion factor to determine the K availability index in soils is adequate and does not affect the K recommendations for crops in southern Brazilian soils.
Resumo:
Soil moisture is the property which most greatly influences the soil dielectric constant, which is also influenced by soil mineralogy. The aim of this study was to determine mathematical models for soil moisture and the dielectric constant (Ka) for a Hapludalf, two clayey Hapludox and a very clayey Hapludox and test the reliability of universal models, such as those proposed by Topp and Ledieu and their co-workers in the 80's, and specific models to estimate soil moisture with a TDR. Soil samples were collected from the 0 to 0.30 m layer, sieved through a mesh of 0.002 m diameter and packed in PVC cylinders with a 0.1 m diameter and 0.3 m height. Seven samples of each soil class were saturated by capillarity and a probe composed of two rods was inserted in each one of them. Moisture readings began with the saturated soil and concluded when the soil was near permanent wilting point. In each step, the samples were weighed on a precision scale to calculate volumetric moisture. Linear and polynomial models were adjusted for each soil class and for all soils together between soil moisture and the dielectric constant. Accuracy of the models was evaluated by the coefficient of determination, the standard error of estimate and the 1:1 line. The models proposed by Topp and Ledieu and their co-workers were not adequate for estimating the moisture in the soil classes studied. The adjusted linear and polynomial models for the entire set of data of the four soil classes did not have sufficient accuracy for estimating soil moisture. The greater the soil clay and Fe oxide content, the greater the dielectric constant of the medium for a given volumetric moisture. The specific models, θ = 0.40283 - 0.04231 Ka + 0.00194 Ka² - 0.000022 Ka³ (Hapludox) θ = 0.01971 + 0.02902 Ka - 0.00086 Ka² + 0.000012 Ka³ (Hapludox -PF), θ = 0.01692 - 0.00507 Ka (Hapludalf) and θ = 0.08471 + 0.01145 Ka (Hapludox-CA), show greater accuracy and reliability for estimating soil moisture in the soil classes studied.
Resumo:
The estimation of non available soil variables through the knowledge of other related measured variables can be achieved through pedotransfer functions (PTF) mainly saving time and reducing cost. Great differences among soils, however, can yield non desirable results when applying this method. This study discusses the application of developed PTFs by several authors using a variety of soils of different characteristics, to evaluate soil water contents of two Brazilian lowland soils. Comparisons are made between PTF evaluated data and field measured data, using statistical and geostatistical tools, like mean error, root mean square error, semivariogram, cross-validation, and regression coefficient. The eight tested PTFs to evaluate gravimetric soil water contents (Ug) at the tensions of 33 kPa and 1,500 kPa presented a tendency to overestimate Ug 33 kPa and underestimate Ug1,500 kPa. The PTFs were ranked according to their performance and also with respect to their potential in describing the structure of the spatial variability of the set of measured values. Although none of the PTFs have changed the distribution pattern of the data, all resulted in mean and variance statistically different from those observed for all measured values. The PTFs that presented the best predictive values of Ug33 kPa and Ug1,500 kPa were not the same that had the best performance to reproduce the structure of spatial variability of these variables.
Resumo:
Soil porosity, especially pore size distribution, is an important controlling factor for soil infiltration, hydraulic conductivity, and water retention. This study aimed to verify the effect of secondary-treated domestic wastewater (STW) on the porosity of a sandy loam Oxisol in the city of Lins, state of São Paulo, Brazil. The two-year experiment was divided into three plots: soil cultivated with corn and sunflower and irrigated with STW, soil cultivated and irrigated with sodic groundwater, and non-irrigated and non-cultivated soil (control). At the end of the experiment, undisturbed core samples were sampled from 0 to 2.0 m (8 depths). The water retention curves were obtained by tension plates and Richard's pressure plate apparatus, and the pore size distribution inferred from the retention curves. It was found that irrigation with treated wastewater and treated groundwater led to a decrease in microporosity (V MI), defined as the pore class ranging from 0.2 to 50 μm diameter. On the other hand, a significant increase in cryptoporosity (V CRI) (< 0.2 μm) was identified throughout the soil profile. The presence of Na+ in both waters confirmed the role of this ion on pore size distribution and soil moisture (higher water retention).
Resumo:
Studies of soils in Environmental Protection Areas (EPAs) are of great importance, because they are an essential component of ecosystems, directly interfering in environmental sustainability. The objective of this study was to evaluate the structural quality of soil cultivated with coffee and used as pasture in the Capituva's River microbasin, which is located in the Environmental Protection Area in Coqueiral, south of the state of Minas Gerais. Uniaxial compression test (preconsolidation test) and soil resistance to penetration were used. Undisturbed samples were taken from the surface layer (0-5 cm) of the soils in the area: a typic dystrophic Red Latosol (LVd - Oxisol), a typic eutrophic Red Argisol (PVe - Ultisol), and a typic dystrophic Haplic Cambisol (CXbd - Inceptisol). A significant linear positive correlation was observed between the results of the preconsolidation test and soil resistance to penetration. Load bearing capacity of soil could be estimated accordingly by means of penetration resistance for LVd, PVe, and CXbd. Cambisol - CXbd showed lower loading support capacity and resistance to penetration than LVd and PVe, due to the better crop management in this soil that resulted in higher physical quality which accounts for higher production and environmental sustainability.
Resumo:
Morphologically differentiated Spodosols usually occur in the Coastal Plain of the South of Bahia and North of Espírito Santo. They are found in profiles known as "muçungas", i.e. sandy soils that accumulate water. In these areas, two kinds of Spodosols, different from those in the Restinga area, can be found: Spodosols with E albic horizon (white muçunungas) and without this horizon (black muçunungas). Eight soil profiles with spodic characteristics were collected and described in order to evaluate differences in the formation process of Barreiras and Restinga Spodosols in the South of Bahia. The soil profiles were also characterized chemically, physically and mineralogically. Additionally, texture and chemical analysis, Fe and Al extraction by sodium dithionite-citrate-bicarbonate (DBC), acid ammonium oxalate and sodium pyrophosphate, ammonium oxalate extract optic density (DOox), sulphuric acid attack, and X ray difractometry of the clay fraction were performed. In the Spodosols of the Barreiras area, fragipan was found the spodic layers. Cemented B spodic horizon were observed in the white muçunungas, and granular structure and dark color from the surface in the black muçunungas. There was no fragipan or hard spodic horizon in the Restinga Spodosol. This soil is acid, dystrophic and alic, with sandy texture and high clay percentages in the spodic horizons. The CEC, based on H + Al, is predominantly represented by the organic matter. The most representative components of the mineral phase of the clay fraction are kaolinite and possibly vermiculite traces with interlayered hydroxy. Chemical, physical, morphological and mineralogical differences were observed between the Barreiras and Restinga environments. The black and white muçunungas differ in morphologic and chemical properties only.
Resumo:
Arsenic has been considered the most poisonous inorganic soil pollutant to living creatures. For this reason, the interest in phytoremediation species has been increasing in the last years. Particularly for the State of Minas Gerais, where areas of former mining activities are prone to the occurrence of acid drainage, the demand is great for suitable species to be used in the revegetation and "cleaning" of As-polluted areas. This study was carried out to evaluate the potential of seedlings of Eucalyptus grandis (Hill) Maiden and E. cloeziana F. Muell, for phytoremediation of As-polluted soils. Soil samples were incubated for a period of 15 days with different As (Na2HAsO4) doses (0, 50, 100, 200, and 400 mg dm-3). After 30 days of exposure the basal leaves of E. cloeziana plants exhibited purple spots with interveinal chlorosis, followed by necrosis and death of the apical bud at the 400 mg dm-3 dose. Increasing As doses in the soil reduced root and shoot dry matter, plant height and diameter in both species, although the reduction was more pronounced in E. cloeziana plants. In both species, As concentrations were highest in the root system; the highest root concentration was found in E. cloeziana plants (305.7 mg kg-1) resulting from a dose of 400 mg dm-3. The highest As accumulation was observed in E. grandis plants, which was confirmed as a species with potential for As phytoextraction, tending to accumulate As in the root system and stem.