185 resultados para ANTIMALARIAL VACCINE
Resumo:
Paramyosin and Sm14 are two of the six antigens selected by the World Health Organization as candidates to compose a subunit vaccine against schistosomiasis. Both antigens are recognized by individuals naturally resistant to Schistosoma mansoni infection and induced protective immunity in the murine model. Three Sm14 epitopes and eleven paramyosin epitopes were selected by their ability to bind to different HLA-DR molecules using the TEPITOPE computer program, and these peptides were synthetically produced. The cellular recognition of Sm14 and paramyosin epitopes by peripheral blood mononuclear cells of individuals living in endemic area for schistosomiasis was tested by T cell proliferation assay. Among all Sm14 and paramyosin epitopes studied, Sm14-3 was preferentially recognized by individuals naturally resistant to S. mansoni infection while Para-5 was preferentially recognized by individuals resistant to reinfection. These two peptides represent promising antigens to be used in an experimental vaccine against schistosomiasis, since their preferential recognition by resistant individuals suggest their involvement in the induction of protective immunity.
Resumo:
The human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) epidemic is of unprecedented gravity and is spreading rapidly, notably in the most disadvantaged regions of the world. The search for a preventive vaccine is thus an absolute priority. For over 10 years the French National Agency for AIDS research (ANRS) has been committed to an original program combining basic science and clinical research. The HIV preventive vaccine research program run by the ANRS covers upstream research for the definition of immunogens, animal models, and clinical research to evaluate candidate vaccines. Most researchers in 2004 believe that it should be possible to obtain partial vaccine protection through the induction of a strong and multiepitopic cellular response. Since 1992, the ANRS has set up 15 phases I and II clinical trials in order to evaluate the safety and the capacity of the candidate vaccines for inducing cellular immune responses. The tested candidate vaccines were increasingly complex recombinant canarypox viruses (Alvac) containing sequences coding for certain viral proteins, utilized alone or combined with other immunogens (whole or truncated envelope proteins). ANRS has also been developing an original strategy based on the utilization of lipopeptides. These comprise synthetic fragments of viral proteins associated with lipids that facilitate the induction of a cellular immune response. These approaches promptly allowed the assessment of a prime-boost strategy combining a viral vector and lipopeptides.
Resumo:
The vaccine Bacillus of Calmette Guérin (BCG) was originally developed in France as an oral vaccine against tuberculosis. The oral use of this vaccine was replaced by the parenteral route in almost all countries after the Lubeck disaster. In contrast, Brazil retained the oral delivery of the vaccine until the mid-seventies when it was replaced by the intradermal route. This change in route of delivery was mainly secondary to pressure by medical practitioners based on the poor responses of oral immunized subjects to purified protein derivative (PPD) skin tests. Even after the change of route of delivery, Ataulpho de Paiva Foundation continued making the oral vaccine. Currently, BCG Moreau has been described as one of the most immunogenic and with fewer side effects than other BCGs. The genomics, proteomics and vaccine trials for oral BCG Moreau Rio de Janeiro are currently under investigation. In this review, we intend to describe the history of BCG Moreau Rio de Janeiro in Brazil.
Resumo:
A polyhistidine-tagged recombinant tegumental protein Schistosoma japonicum very lowdensity lipoprotein binding protein (SVLBP) from adult Schistosoma japonicum was expressed in Escherichia coli. The affinity purified rSVLBP was used to vaccinate mice. The worm numbers and egg deposition recovered from the livers and veins of the immunized mice were 33.5% and 47.6% less than that from control mice, respectively (p<0.05). There was also a marked increase in the antibody response in vaccinated mice: the titer of IgG1 and IgG2a, IgG2b in the vaccinated group was significantly higher than that in the controls (>1:6,400 in total IgG). In a comparison of the reactivity of sera from healthy individuals and patients with rSVLBP, recognition patterns against this parasite tegumental antigen varied among different groups of the individuals. Notably, the average titres of anti-rSVLBP antibody in sera from faecal egg-negative individuals was significantly higher than that in sera from the faecal egg-positives, which may be reflect SVLBP-specific protection. These results suggested that the parasite tegumental protein SVLBP was a promising candidate for further investigation as a vaccine antigen for use against Asian schistosomiasis.
Resumo:
This study investigated the seropositivity for hepatitis B virus (HBV), the vaccination index, and the vaccine response index in dentists from Campo Grande, MS. Blood samples from 474 dentists (63.7% women and 36.3% men), with a mean age of 38.5 ± 10.5 years were analyzed by enzyme-linked immunosorbent assay to detect the serological markers: HBsAg, anti-HBs, and anti-HBc. The HBsAg positive samples were tested for anti-HBc IgM, HBeAg, and anti-HBe. A total of 51 (10.8%) dentists showed seropositivity for HBV. Three (0.6%) were HBsAg/anti-HBc/anti-HBe positive, 43 (9.1%) were anti-HBc/anti-HBs positive, and 5 (1.1%) had only anti-HBc. Viral DNA was detected by polymerase chain reaction in 9 (17.6%) out of 51 HBV seropositive samples. A vaccination index of 96.6% (458/474) was observed, although 73.1% (335/458)completed the three-dose schedule. Excluding 46 HBV seropositive individuals from 458 that reported vaccination, 412 were analyzed for vaccine response index. It was observed that 74.5% (307/412) were anti-HBs positive; this percentage increased to 79.1% when three doses were administered. The results showed a high vaccination index and a good rate of vaccine response; however, the failure in completing the three-dose schedule and the occurrence of HBV infection reinforce the need for more effective prevention strategies.
Resumo:
The pathogenesis of Schistosoma mansoni infection is largely determined by host T-cell mediated immune responses such as the granulomatous response to tissue deposited eggs and subsequent fibrosis. The major egg antigens have a valuable role in desensitizing the CD4+ Th cells that mediate granuloma formation, which may prevent or ameliorate clinical signs of schistosomiasis.S. mansoni major egg antigen Smp40 was expressed and completely purified. It was found that the expressed Smp40 reacts specifically with anti-Smp40 monoclonal antibody in Western blotting. Three-dimensional structure was elucidated based on the similarity of Smp40 with the small heat shock protein coded in the protein database as 1SHS as a template in the molecular modeling. It was figured out that the C-terminal of the Smp40 protein (residues 130 onward) contains two alpha crystallin domains. The fold consists of eight beta strands sandwiched in two sheets forming Greek key. The purified Smp40 was used for in vitro stimulation of peripheral blood mononuclear cells from patients infected with S. mansoni using phytohemagglutinin mitogen as a positive control. The obtained results showed that there is no statistical difference in interferon-g, interleukin (IL)-4 and IL-13 levels obtained with Smp40 stimulation compared with the control group (P > 0.05 for each). On the other hand, there were significant differences after Smp40 stimulation in IL-5 (P = 0.006) and IL-10 levels (P < 0.001) compared with the control group. Gaining the knowledge by reviewing the literature, it was found that the overall pattern of cytokine profile obtained with Smp40 stimulation is reported to be associated with reduced collagen deposition, decreased fibrosis, and granuloma formation inhibition. This may reflect its future prospect as a leading anti-pathology schistosomal vaccine candidate.
Resumo:
The prevention of hepatitis B by vaccination is one of the most efficient tools to avoid the transmission of the virus. This study evaluated the immunogenicity of the national vaccine Butang® in children born in Campo Mourão City, state of Paraná, Brazil, aged 7 to 12 months, by determining the anti-HBsAg antibodies levels after completion of the National Immunization Program Protocol for hepatitis B. All 70 children evaluated by the MEIA method (immune-enzymatic micro particles) showed seroconversion to the Butang® vaccine. Nine children (12.9%) presented a low response, with anti-HBs titers between 11 and 100 mUI/ml; 39 children (55.7%) showed a good response to the vaccine, with titers between 101 and 1000 mUI/ml; and 22 children (31.4%) showed antibodies titers higher than 1000 mUI/ml. The mean titer of the anti-HBs antibody titers was 1408.1 ± 2870.26 mUI/ml (15.7 to 19560.0 mUI/ml). The levels of antibodies produced by the prematurely-born children were not statistically different from those found in the newborns. Fifty-five children were also evaluated through the ELFA method (ELISA with a final detection in fluorescence), which presented similar results. The results obtained in our study corroborated the effectiveness of the national vaccine Butang® in newborn children of Campo Mourão City, Paraná, even if they were premature.
Resumo:
The high level of protection elicited in rodents and primates by the radiation-attenuated schistosome vaccine gives hope that a human vaccine relying on equivalent mechanisms is feasible. In humans, a vaccine would be undoubtedly administered to previously or currently infected individuals. We have therefore used the olive baboon to investigate whether vaccine-induced immunity is compromised by a schistosome infection. We showed that neither a preceding infection, terminated by chemotherapy, nor an ongoing chronic infection affected the level of protection. Whilst IgM responses to vaccination or infection were short-lived, IgG responses rose with each successive exposure to the vaccine. Such a rise was obscured by responses to egg deposition in already-infected animals. In human trials it would be necessary to use indirect estimates of infection intensity to determine vaccine efficacy. Using worm burden as the definitive criterion, we demonstrated that the surrogate measures, fecal eggs, and circulating antigens, consistently overestimated protection. Regression analysis of the surrogate parameters on worm burden revealed that the principal reason for overestimation was the threshold sensitivity of the assays. If we extrapolate our findings to human schistosomiasis mansoni, it is clear that more sensitive indirect measures of infection intensity are required for future vaccine trials.
Resumo:
Protamine sulphate/DNA complexes have been shown to protect DNA from DNase digestion in a lipid system for gene transfer. A DNA-based vaccine complexed to protamine sulphate was used to induce an immune response against Schistosoma mansoni anchored-glycosylphosphatidylinositol tegumental antigen in BALB/c mice. The protection elicited ranged from 33 to 44%. The spectrum of the elicited immune response induced by the vaccine formulation without protamine was characterized by a high level of IgG (IgG1> IgG2a). Protamine sulphate added to the DNA vaccine formulation retained the green fluorescent protein encoding-plasmid longer in muscle and spleen. The experiments in vivo showed that under protamine sulphate effect, the scope of protection remained unchanged, but a modulation in antibody production (IgG1= IgG2a) was observed.
Resumo:
Plasmodium chabaudi malaria parasite organelles are major elements for ion homeostasis and cellular signaling and also target for antimalarial drugs. By using confocal imaging of intraerythrocytic parasites we demonstrated that the dye acridine orange (AO) is accumulated into P. chabaudi subcellular compartments. The AO could be released from the parasite organelles by collapsing the pH gradient with the K+/H+ ionophore nigericin (20 µM), or by inhibiting the H+-pump with bafilomycin (4 µM). Similarly, in isolated parasites loaded with calcium indicator Fluo 3-AM, bafilomycin caused calcium mobilization of the acidic calcium pool that could also be release with nigericin. Interestingly after complete release of the acidic compartments, addition of thapsigargin at 10 µM was still effective in releasing parasite intracellular calcium stores in parasites at trophozoite stage. The addition of antimalarial drugs chloroquine and artemisinin resulted in AO release from acidic compartments and also affected maintenance of calcium in ER store by using different drug concentrations.
Resumo:
In previous immuno-epidemiological studies of the naturally acquired antibody responses to merozoite surface protein-1 (MSP-1) of Plasmodium vivax, we had evidence that the responses to distinct erythrocytic stage antigens could be differentially regulated. The present study was designed to compare the antibody response to three asexual erythrocytic stage antigens vaccine candidates of P. vivax. Recombinant proteins representing the 19 kDa C-terminal region of MSP-1(PvMSP19), apical membrane antigen n-1 ectodomain (PvAMA-1), and the region II of duffy binding protein (PvDBP-RII) were compared in their ability to bind to IgG antibodies of serum samples collected from 220 individuals from the state of Pará, in the North of Brazil. During patent infection with P. vivax, the frequency of individuals with IgG antibodies to PvMSP1(19), PvAMA-1, and PvDBP-RII were 95, 72.7, and 44.5% respectively. Although the frequency of responders to PvDBP-RII was lower, this frequency increased in individuals following multiple malarial infections. Individually, the specific antibody levels did not decline significantly nine months after treatment, except to PvMSP1(19). Our results further confirm a complex regulation of the immune response to distinct blood stage antigens. The reason for that is presently unknown but it may contribute to the high risk of re-infection in individuals living in the endemic areas.
Resumo:
In the present study, a quassinoid, neosergeolide, isolated from the roots and stems of Picrolemma sprucei (Simaroubaceae), the indole alkaloids ellipticine and aspidocarpine, isolated from the bark of Aspidosperma vargasii and A. desmanthum (Apocynaceae), respectively, and 4-nerolidylcatechol, isolated from the roots of Pothomorphe peltata (Piperaceae), all presented significant in vitro inhibition (more active than quinine and chloroquine) of the multi-drug resistant K1 strain of Plasmodium falciparum. Neosergeolide presented activity in the nanomolar range. This is the first report on the antimalarial activity of these known, natural compounds. This is also the first report on the isolation of aspidocarpine from A. desmanthum. These compounds are good candidates for pre-clinical tests as novel lead structures with the aim of finding new antimalarial prototypes and lend support to the traditional use of the plants from which these compounds are derived.
Resumo:
Malaria emerges from a disequilibrium of the system 'human-plasmodium-mosquito' (HPM). If the equilibrium is maintained, malaria does not ensue and the result is asymptomatic plasmodium infection. The relationships among the components of the system involve coadaptive linkages that lead to equilibrium. A vast body of evidence supports this assumption, including the strategies involved in the relationships between plasmodium and human and mosquito immune systems, and the emergence of resistance of plasmodia to antimalarial drugs and of mosquitoes to insecticides. Coadaptive strategies for malaria control are based on the following principles: (1) the system HPM is composed of three highly complex and dynamic components, whose interplay involves coadaptive linkages that tend to maintain the equilibrium of the system; (2) human and mosquito immune systems play a central role in the coadaptive interplay with plasmodium, and hence, in the mainten-ance of the system's equilibrium; the under- or overfunction of human immune system may result in malaria and influence its severity; (3) coadaptation depends on genetic and epigenetic phenomena occurring at the interfaces of the components of the system, and may involve exchange of infectrons (genes or gene fragments) between the partners; (4) plasmodia and mosquitoes have been submitted to selective pressures, leading to adaptation, for an extremely long while and are, therefore, endowed with the capacity to circumvent both natural (immunity) and artificial (drugs, insecticides, vaccines) measures aiming at destroying them; (5) since malaria represents disequilibrium of the system HPM, its control should aim at maintaining or restoring this equilibrium; (6) the disequilibrium of integrated systems involves the disequilibrium of their components, therefore the maintenance or restoration of the system's equilibrium depend on the adoption of integrated and coordinated measures acting on all components, that means, panadaptive strategies. Coadaptive strategies for malaria control should consider that: (1) host immune response has to be induced, since without it, no coadaptation is attained; (2) the immune response has to be sustained and efficient enough to avoid plasmodium overgrowth; (3) the immune response should not destroy all parasites; (4) the immune response has to be well controlled in order to not harm the host. These conditions are mostly influenced by antimalarial drugs, and should also be taken into account for the development of coadaptive malaria vaccines.
Resumo:
Resistance in Plasmodium falciparum to amodiaquine (AQ) can be reversed in vitro with with antihistaminic and tricyclic antidepressant compounds, but its significance in vivo is unclear. The present report presents the enhancement of the antimalarial efficacy of AQ by chlorpheniramine, an H1 receptor antagonist that reverses chloroquine (CQ) resistance in vitro and enhances its efficacy in vivo, in five children who failed CQ and/or AQ treatment, and who were subsequently retreated and cured with a combination of AQ plus CP, despite the fact that parasites infecting the children harboured mutant pfcrtT76 and pfmdr1Y86 alleles associated with AQ resistance. This suggests a potential clinical appliation of the reversal phenomenon.
Resumo:
This study was carried out to evaluate the molecular pattern of all available Brazilian human T-cell lymphotropic virus type 1 Env (n = 15) and Pol (n = 43) nucleotide sequences via epitope prediction, physico-chemical analysis, and protein potential sites identification, giving support to the Brazilian AIDS vaccine program. In 12 previously described peptides of the Env sequences we found 12 epitopes, while in 4 peptides of the Pol sequences we found 4 epitopes. The total variation on the amino acid composition was 9 and 17% for human leukocyte antigen (HLA) class I and class II Env epitopes, respectively. After analyzing the Pol sequences, results revealed a total amino acid variation of 0.75% for HLA-I and HLA-II epitopes. In 5 of the 12 Env epitopes the physico-chemical analysis demonstrated that the mutations magnified the antigenicity profile. The potential protein domain analysis of Env sequences showed the loss of a CK-2 phosphorylation site caused by D197N mutation in one epitope, and a N-glycosylation site caused by S246Y and V247I mutations in another epitope. Besides, the analysis of selection pressure have found 8 positive selected sites (w = 9.59) using the codon-based substitution models and maximum-likelihood methods. These studies underscore the importance of this Env region for the virus fitness, for the host immune response and, therefore, for the development of vaccine candidates.