141 resultados para ABUNDANCE PATTERN
Resumo:
Necrophagous Diptera associated with wild animal carcasses in southern Brazil. The aim of this study was to acquire a better knowledge concerning the diversity of necrophagous Diptera that develop on wild animal carcasses. For this purpose, the decomposition of six wild animal carcasses was observed in order to collect and identify the main species of necrophagous flies associated with the decomposition process. The carcasses were found on highways near the cities of Pelotas and Capão do Leão in the initial stage of decomposition, with no significant injuries or prior larval activity. Four wild animal models were represented in this study: two specimens of Didelphis albiventris Lund, 1840; two Tupinambis merianae Linnaeus, 1758; one Nothura maculosa Temminck, 1815; and one Cerdocyon thous Linnaeus, 1766. A total of 16,242 flies from 14 species were reared in the laboratory, where Muscidae presented the greatest diversity of necrophagous species. Overall, (i) carcasses with larger biomass developed a higher abundance of flies and (ii) the necrophagous community was dominated by Calliphoridae, two patterns that were predicted from published literature; and (iii) the highest diversity was observed on the smaller carcasses exposed to the lowest temperatures, a pattern that may have been caused by the absence of the generalist predator Chrysomya albiceps (Wiedemann, 1819). (iv) An UPGMA analysis revealed a similar pattern of clusters of fly communities, where the same species were structuring the groupings.
Resumo:
ABSTRACT We investigated the distribution, morphology and abundance of antennae sensilla of Coboldia fuscipes (Meigen) using scanning electron microscopy. Antennae of C. fuscipes consisted of scape, pedicel, and flagellum with eight flagellomeres. Antennal scape and pedicel had only one type of sensillum, i.e., sensilla chaetica. Significant differences were found between the number and distribution of these sensilla. Four types of morphologically distinct sensilla on the flagellum were identified, including sensilla chaetica, sensilla trichoidea, sensilla coeloconica, and sensilla basiconica (three subtypes). Significant differences were found in the abundance and distribution of sensilla among the antennal flagella and diverse flagellomeres in both sexes. Sensilla trichoidea is the most abundant of sensilla discovered on the antennal flagellum. Sensilla chaetica is the largest and longest sensilla among all the types of sensilla found on the antennal surface of C. fuscipes. Sensilla coeloconica is widely distributed all over the flagellum surface except for the first of female. Some significant differences in the abundance and distribution were also observed among sensilla basiconica of flagellum. The probable biological function of each sensillum type was deduced based on the basis of their structure. These results serve as important basis for further studies on the host location mechanism and mating behavior of C. fuscipes.
Resumo:
The 13C natural abundance technique was applied to study C dynamics after land-use change from native savanna to Brachiaria, Pinus, and Eucalyptus in differently textured Cerrado Oxisols. But due to differences in the d13C signatures of subsoils under native savanna and under introduced species, C substitution could only be calculated based on results of cultivated soils nearby. It was estimated that after 20 years, Pinus C had replaced only 5 % of the native C in the 0-1.2 m layer, in which substitution was restricted to the top 0.4 m. Conversely, after 12 years, Brachiaria had replaced 21 % of Cerrado C to a depth of 1.2 m, where substitution decreased only slightly throughout the entire profile. The high d13C values in the subsoils of the cultivated sites led to the hypothesis that the natural vegetation there had been grassland rather than Cerrado sensu stricto, in spite of the comparable soil and site characteristics and the proximity of the studied sites. The hypothesis was tested using aerial photographs of 1964, which showed that the cultivated sites were located on a desiccated runoff head. The vegetation shift to a grass-dominated savanna formation might therefore have occurred in response to waterlogging and reduced soil aeration. A simple model was developed thereof, which ascribes the different Cerrado formations mainly to the plant-available water content and soil aeration. Soil fertility is considered of minor significance only, since at the studied native savanna sites tree density was independent of soil texture or nutrient status.
Resumo:
Maize root growth is negatively affected by compacted layers in the surface (e.g. agricultural traffic) and subsoil layers (e.g. claypans). Both kinds of soil mechanical impedances often coexist in maize fields, but the combined effects on root growth have seldom been studied. Soil physical properties and maize root abundance were determined in three different soils of the Rolling Pampa of Argentina, in conventionally-tilled (CT) and zero-tilled (ZT) fields cultivated with maize. In the soil with a light Bt horizon (loamy Typic Argiudoll, Chivilcoy site), induced plough pans were detected in CT plots at a depth of 0-0.12 m through significant increases in bulk density (1.15 to 1.27 Mg m-3) and cone (tip angle of 60 º) penetrometer resistance (7.18 to 9.37 MPa in summer from ZT to CT, respectively). This caused a reduction in maize root abundance of 40-80 % in CT compared to ZT plots below the induced pans. Two of the studied soils had hard-structured Bt horizons (clay pans), but in only one of them (silty clay loam Abruptic Argiudoll, Villa Lía site) the expected penetrometer resistance increases (up to 9 MPa) were observed with depth. In the other clay pan soil (silty clay loam Vertic Argiudoll, Pérez Millán site), penetrometer resistance did not increase with depth but reached 14.5 MPa at 0.075 and 0.2 m depth in CT and ZT plots, respectively. However, maize root abundance was stratified in the first 0.2 m at the Villa Lía and Pérez Millán sites. There, the hard Bt horizons did not represent an absolute but a relative mechanical impedance to maize roots, by the observed root clumping through desiccation cracks.
Resumo:
The irregular disposal of coal combustion residues has adverse impacts on terrestrial ecosystems. Pioneer plants and soil invertebrates play an important role in the recovery of these areas. The goal of this study was to investigate the colonization patterns of terrestrial isopods (Oniscidea) in leaf litter of three spontaneous pioneer plants (grass - Poaceae, shrub - Euphorbiaceae, tree - Anarcadiaceae) at sites used for fly ash or boiler slag disposal. The experiment consisted of eight blocks (four per disposal site) of 12 litter bags each (four per plant species) that were randomly removed after 6, 35, 70 or 140 days of field exposure. Three isopod species were found in the litter bags: Atlantoscia floridana (van Name, 1940) (Philosciidae; n = 116), Benthana taeniata Araujo & Buckup, 1994 (Philosciidae; n = 817) and Balloniscus sellowii (Brandt, 1833) (Balloniscidae; n = 48). The isopods colonized the three leaf-litter species equally during the exposure period. However, the pattern of leaf-litter colonization by these species suggests a conflict of objectives between high quality food and shelter availability. The occurrence of A. floridana and the abundance and fecundity of B. taeniata were influenced by the residue type, indicating that the isopods have different degrees of tolerance to the characteristics of the studied sites. Considering that terrestrial isopods are abundant detritivores and stimulate the humus-forming processes, it is suggested that they could have an indirect influence on the soil restoration of this area.
Resumo:
Soil samples were collected from the top 7.5 cm of soil in a Strict Natural Reserve (SNR), a surrounding buffer zone, a cassava farm and matured plantations of Gmelina, teak, and pine, so as to determine if plantation establishment and intensive cultivation affect the density and diversity of soil mites. Altogether, 41 taxonomic groups of mites were identified. The diversity and densities of mites in within the SNR, the buffer zone and the Gmelina were more than the diversity and densities in the cassava farm, teak and pine plantations. Each plantation had its own unique community structure which was different from the community structure in the SNR plot. The SNR plot and Gmelina were dominated by detritivorous cryptostigmatid mites unlike teak and pine which were dominated by predatory mesostigmatid and prostigmatid mites respectively. Low cryptostigmatid mite densities in the plantations and cassava farm were seen as a consequence of low fertility status of the soil, the evidence of which was revealed by soil pH and organic matter data.
Resumo:
Rice blast is a major yield constraint of the irrigated rice in the State of Tocantins, Brazil. The objective of this investigation was to study the phenotypic and genetic diversity within the pathogen population of Pyricularia grisea in samples collected from four individual farms of rice cultivar Metica-1, under epidemic conditions of leaf blast. A set of 87 isolates was tested on 32 rice genotypes including eight international differentials. Considering 80% similarity in virulence, two groups comprising a total of 81 isolates were recognized, independently of the farms from which they were collected. Eighty percent of the isolates pertained to pathotype ID-14, indicating high cultivar specificity and narrow diversity of virulence in the sample population. The virulence in pathogen population on rice cultivars BR-IRGA 409 and Rio Formoso was low. Analysis of P. grisea isolates using rep-PCR with two primer sequences from Pot2 generated fingerprint profiles of one to nine bands. Cluster analysis revealed the occurrence of six fingerprint groups with similarities ranging from 0.09 to 1. There was no straight relationship between virulence of the isolates based on reaction pattern on 32 genotypes and grouping based on Pot2 rep-PCR analysis of P. grisea isolates collected from 'Metica-1'.
Bemisia tabaci, Brevicoryne brassicae and Thrips tabaci abundance on Brassica oleracea var. acephala
Resumo:
Kale Brassica oleracea var. acephala is attacked by whitefly Bemisia tabaci, aphid Brevicoryne brassicae and Thrips tabaci. One of the main reasons for extensive insecticide application is the lack of information about factors that control insect population. The objectives of this study were to investigate the relationships between predators and parasitoids, organic compound leaves, levels of leaf nitrogen and potassium, total rainfall, relative humidity, sunlight and median temperature on the abundance of whitefly, aphid, and thrips in kale genotype "Talo Roxo". The beating tray method, direct counting and magnifying lens were used to estimate the number of these pests, predators and parasitoids. Median temperature, sunlight and relative humidity correlated to the amount of leaf nonacosane, which in turn was associated with aphids population increase. A tendency in the reduction of aphids and thrips populations with increase in total rainfall was observed. The whitefly can be a harmful pest in kale producing regions of higher temperature and smaller rainfall. In regions which present moderate temperature, where there is a high incidence of aphids, genotype with low leaf wax content should be chosen. Natural enemies, especially the parasitoid Adialytus spp., can control agents of the aphids population in kale.
Resumo:
The objective of this work was to determine soybean resistance inheritance to Heterodera glycines Ichinohe (soybean cyst nematode - SCN) races 3 and 9, as well as to evaluate the efficiency of direct and indirect selection in a soybean population of 112 recombinant inbred lines (RIL) derived from the resistant cultivar Hartwig. The experiment was conducted in a completely randomized design, in Londrina, PR, Brazil. The estimated narrow-sense heritabilities for resistance to races 3 and 9 were 80.67 and 77.97%. The genetic correlation coefficient (r g = 0.17; p<0.01) shows that some genetic components of resistance to these two races are inherited together. The greatest genetic gain by indirect selection was obtained to race 9, selecting to race 3 due to simpler inheritance of resistance to race 9 and not because these two races share common resistance genes. The resistance of cultivar Hartwig to races 3 and 9 is determined by 4 and 2 genes, respectively. One of these genes confers resistance to both races, explaining a fraction of the significant genetic correlation found between resistance to these SCN races. The inheritance pattern described indicates that selection for resistance to SCN must be performed for each race individually.
Resumo:
The virulence pattern of the isolates of Pyricularia grisea from commercial fields of the upland rice (Oryza sativa) cultivars 'Primavera' and 'BRS Bonança' was analyzed. A hundred and seventy monoconidial isolates of the pathogen virulent to 'Primavera' and 139 to 'BRS Bonança' collected from eight fields, during two years (2001-2003) were tested, under greenhouse conditions, on six newly released rice cultivars. Differences in virulence pattern were observed in pathogenic populations of 'Primavera' and 'BRS Bonança'. Isolates with virulence to improved cultivars were common in samples from farmers' fields in the absence of aloinfection. The virulence frequency of P. grisea isolates collected from 'Primavera'' to cultivars 'BRS Vencedora', 'BRS Colosso', 'BRS Liderança', 'BRS Soberana', 'BRS Curinga' and 'BRS Talento', was high in descending order. On the other hand, in the fungus population of 'BRS BRS Bonança' virulence frequency was high in 'BRS Talento', followed by 'BRS Curinga', 'BRS Vencedora', 'BRS Liderança', 'BRS Colosso' and 'BRS Soberana'. While virulence to 'BRS Talento' was rare among isolates from 'Primavera', it was most frequent in isolates of 'BRS Bonança'. The six improved rice cultivars permitted to differentiating agriculturally important virulences in the pathogen population which can be utilized in selecting breeding lines for specific resistance, in rice blast improvement program.
Resumo:
The time required to regrowth a forest in degraded areas depends on how the forest is removed and on the type of land use following removal. Natural regeneration was studied in abandoned old fields after intensive agricultural land use in areas originally covered by Brazilian Atlantic Forests of the Anchieta Island, Brazil in order to understand how plant communities reassemble following human disturbances as well as to determine suitable strategies of forest restoration. The fields were classified into three vegetation types according to the dominant plant species in: 1) Miconia albicans (Sw.) Triana (Melastomataceae) fields, 2) Dicranopteris flexuosa (Schrader) Underw. (Gleicheniaceae) thickets, and 3) Gleichenella pectinata (Willd.) Ching. (Gleicheniaceae) thickets. Both composition and structure of natural regeneration were compared among the three dominant vegetation types by establishing randomly three plots of 1 x 3 m in five sites of the island. A gradient in composition and abundance of species in natural regeneration could be observed along vegetation types from Dicranopteris fern thickets to Miconia fields. The gradient did not accurately follow the pattern of spatial distribution of the three dominant vegetation types in the island regarding their proximity of the remnant forests. A complex association of biotic and abiotic factors seems to be affecting the seedling recruitment and establishment in the study plots. The lowest plant regeneration found in Dicranopteris and Gleichenella thickets suggests that the ferns inhibit the recruitment of woody and herbaceous species. Otherwise, we could not distinguish different patterns of tree regeneration among the three vegetation types. Our results showed that forest recovery following severe anthropogenic disturbances is not direct, predictable or even achievable on its own. Appropriated actions and methods such as fern removal, planting ground covers, and enrichment planting with tree species were suggested in order to restore the natural forest regeneration process in the abandoned old fields.
Resumo:
Edge effects are considered a key factor in regulating the structure of plant communities in different ecosystems. However, regardless to few studies, edge influence does not seem to be decisive in semiarid regions such as the Brazilian tropical dry forest known as Caatinga but this issue remains inconclusive. The present study tests the null hypothesis that the plant community of shrubs and trees does not change in its structure due to edge effects. Twenty-four plots (20 x 20 m) were set up in a fragment of Caatinga, in which 12 plots were in the forest edges and 12 plots were inside the fragment. Tree richness, abundance and species composition did not differ between edge and interior plots. The results of this study are in agreement with the pattern previously found for semiarid environments and contrasts with previous results obtained in different environments such as Rainforests, Savanna and Forest of Araucaria, which indicate abrupt differences between the border and interior of the plant communities in these ecosystems, and suggest that the community of woody plants of the Caatinga is not ecologically affected by the presence of edges.
Resumo:
ABSTRACTThe composition and structure of the low-trunk epiphytic herb assembly as well as its vertical distribution were studied. DBH of host tree and bark type influence species richness and abundance in a nonlooded lowland tropical rainforest in Eastern Amazonia (1º57’36"S 51º36’55"W). A total of 37 epiphytic herb species were identified, among which 60% were Araceae. Species richness and abundance of epiphytic herbs showed tendency of positive correlation with host tree size and no relationships with bark type. Low positive correlation may be a by-product of the predominance of trees with smaller diameter in our sample rather than a reflection of neutral relationship. The absence of relationships with bark type may be partially explained by the large number of secondary, generalist, hemi-epiphytes and also may reflect the absence of suitable substrate in trees with smaller diameter.
Resumo:
Taking into account that the sampling intensity of soil attributes is a determining factor for applying of concepts of precision agriculture, this study aims to determine the spatial distribution pattern of soil attributes and corn yield at four soil sampling intensities and verify how sampling intensity affects cause-effect relationship between soil attributes and corn yield. A 100-referenced point sample grid was imposed on the experimental site. Thus, each sampling cell encompassed an area of 45 m² and was composed of five 10-m long crop rows, where referenced points were considered the center of the cell. Samples were taken from at 0 to 0.1 m and 0.1 to 0.2 m depths. Soil chemical attributes and clay content were evaluated. Sampling intensities were established by initial 100-point sampling, resulting data sets of 100; 75; 50 and 25 points. The data were submitted to descriptive statistical and geostatistics analyses. The best sampling intensity to know the spatial distribution pattern was dependent on the soil attribute being studied. The attributes P and K+ content showed higher spatial variability; while the clay content, Ca2+, Mg2+ and base saturation values (V) showed lesser spatial variability. The spatial distribution pattern of clay content and V at the 100-point sampling were the ones which best explained the spatial distribution pattern of corn yield.
Resumo:
ABSTRACTScarlet Morning Glory is considered to be an infesting weed that affects several crops and causes serious damage. The application of chemical herbicides, which is the primary control method, requires a broad knowledge of the various characteristics of the solution and application technology for a more efficient phytosanitary treatment. Therefore this study aimed to characterize the effect of rainfall incidence on the control of Ipomoea hederifolia, considering droplet size, surface tension, contact angle of droplets formed by herbicides liquid on vegetal and artificial surfaces, associated to adjuvants and the volumetric distribution profile of the spray jet. The addition of the adjuvants to the herbicide spraying liquid improved the application quality, as it influenced the angle formed by the spray by broadening the deposition band of the spray nozzle and thus the possible distance between the nozzles on spray boom and due the changes at droplet size, which contribute to a safety application. The rainfall occurrence affected negatively the weed control with the different spraying liquids and also the dry matter weight, suggesting that the phytosanitary product applied was washed off.