111 resultados para viral entry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente estudo avaliou a participação de agentes bacterianos e virais em abortos em bovinos de propriedades rurais do sul de Minas Gerais. Foi realizada análise histopatológica e imuno-histoquímica dos casos de aborto recebidos pelo Setor de Patologia Veterinária da Universidade Federal de Lavras no período de 1999 a 2013. De 60 fetos analisados, em 30 (50%) foram observadas lesões microscópicas. Destes, oito apresentavam lesões compatíveis com infecção por agentes bacterianos e três apresentaram lesões sugestivas de agentes virais. Dos abortos bacterianos, um feto tinha lesões compatíveis com leptospirose, caracterizadas por icterícia e colestase, nefrite intersticial linfoplasmocítica e nefrose tubular. Sete fetos apresentaram pneumonia ou broncopneumonia purulenta; num deles havia também pleurite e peritonite fibrinosas; e em dois desses fetos houve imunomarcação para Brucella abortus. Dos três fetos com lesões sugestivas de aborto viral ocorreu imunomarcação anti-Herpesvírus bovino em um. Os resultados demonstram a ocorrência de abortos de origem bacteriana e viral na Região do estudo e que medidas profiláticas devem ser adotadas nas propriedades. O trabalho demonstra também que a imuno-histoquímica (IHQ); associada à histopatologia; é uma ferramenta útil e viável para o diagnóstico, especialmente quando provas microbiológicas e/ou sorológicas não estão disponíveis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yellow fever (YF) virus is the prototype flavivirus. The use of molecular techniques has unraveled the basic mechanisms of viral genome structure and expression. Recent trends in flavivirus research include the use of infectious clone technology with which it is possible to recover virus from cloned cDNA. Using this technique, mutations can be introduced at any point of the viral genome and their resulting effect on virus phenotype can be assessed. This approach has opened new possibilities to study several biological viral features with special emphasis on the issue of virulence/attenuation of the YF virus. The feasibility of using YF virus 17D vaccine strain, for which infectious cDNA is available, as a vector for the expression of heterologous antigens is reviewed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Outward current oscillations associated with transient membrane hyperpolarizations were induced in murine macrophage polykaryons by membrane depolarization in the absence of external Na+. Oscillations corresponded to a cyclic activation of Ca2+-dependent K+ currents (IKCa) probably correlated with variations in intracellular Ca2+ concentration. Addition of external Na+ (8 mM) immediately abolished the outward current oscillations, suggesting that the absence of the cation is necessary not only for their induction but also for their maintenance. Oscillations were completely blocked by nisoldipine. Ruthenium red and ryanodine reduced the number of outward current cycles in each episode, whereas quercetin prolonged the hyperpolarization 2- to 15-fold. Neither low molecular weight heparin nor the absence of a Na+ gradient across the membrane had any influence on oscillations. The evidence suggests that Ca2+ entry through a pathway sensitive to Ca2+ channel blockers is elicited by membrane depolarization in Na+-free medium and is essential to initiate oscillations, which are also dependent on the cyclic release of Ca2+ from intracellular Ca2+-sensitive stores; Ca2+ ATPase acts by reducing intracellular Ca2+, thus allowing slow deactivation of IKCa. Evidence is presented that neither a Na+/Ca2+ antiporter nor Ca2+ release from IP3-sensitive Ca2+ stores participate directly in the mechanism of oscillation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation we studied the fusogenic process developed by influenza A, B and C viruses on cell surfaces and different factors associated with virus and cell membrane structures. The biological activity of purified virus strains was evaluated in hemagglutination, sialidase and fusion assays. Hemolysis by influenza A, B and C viruses ranging from 77.4 to 97.2%, from 20.0 to 65.0%, from 0.2 to 93.7% and from 9.0 to 76.1% was observed when human, chicken, rabbit and monkey erythrocytes, respectively, were tested at pH 5.5. At this pH, low hemolysis indexes for influenza A, B and C viruses were observed if horse erythrocytes were used as target cells for the fusion process, which could be explained by an inefficient receptor binding activity of influenza on N-glycolyl sialic acids. Differences in hemagglutinin receptor binding activity due to its specificity to N-acetyl or N-glycolyl cell surface oligosaccharides, density of these cellular receptors and level of negative charges on the cell surface may possibly explain these results, showing influence on the sialidase activity and the fusogenic process. Comparative analysis showed a lack of dependence between the sialidase and fusion activities developed by influenza B viruses. Influenza A viruses at low sialidase titers (<2) also exhibited clearly low hemolysis at pH 5.5 (15.8%), while influenza B viruses with similarly low sialidase titers showed highly variable hemolysis indexes (0.2 to 78.0%). These results support the idea that different virus and cell-associated factors such as those presented above have a significant effect on the multifactorial fusion process

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemokines are members of a family of more than 30 human cytokines whose best-described activities are as chemotactic factors for leukocytes and that are presumed to be important in leukocyte recruitment and trafficking. While many chemokines can act on lymphocytes, the roles of chemokines and their receptors in lymphocyte biology are poorly understood. The recent discoveries that chemokines can suppress infection by HIV-1 and that chemokine receptors serve, along with CD4, as obligate co-receptors for HIV-1 entry have lent urgency to studies on the relationships between chemokines and lymphocytes. My laboratory has characterized Mig and Crg-2/IP-10, chemokines that are induced by IFN-g and that specifically target lymphocytes, particularly activated T cells. We have demonstrated that the genes for these chemokines are widely expressed during experimental infections in mice with protozoan and viral pathogens, but that the patterns of mig and crg-2 expression differed, suggesting non-redundant roles in vivo. Our related studies to identify new chemokine receptors from activated lymphocytes resulted in the cloning of STRL22 and STRL33. We and others have shown that STRL22 is a receptor for the CC chemokine MIP-3a, and STRL22 has been re-named CCR6. Although STRL33 remains an orphan receptor, we have shown that it can function as a co-receptor for HIV-1 envelope glycoproteins, and that it is active with a broader range of HIV-1 envelope glycoproteins than the major co-receptors described to date. The ability of STRL33 to function with a wide variety of envelope glycoproteins may become particularly important if therapies are instituted to block other specific co-receptors. We presume that investigations into the roles of chemokines and their receptors in lymphocyte biology will provide information important for understanding the pathogenesis of AIDS and for manipulating immune and inflammatory responses for clinical benefit

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nineteen Brazilian isolates of bovine viral diarrhea virus (BVDV) were characterized antigenically with a panel of 19 monoclonal antibodies (mAbs) (Corapi WV, Donis RO and Dubovi EJ (1990) American Journal of Veterinary Research, 55: 1388-1394). Eight isolates were further characterized by cross-neutralization using sheep monospecific antisera. Analysis of mAb binding to viral antigens by indirect immunofluorescence revealed distinct patterns of reactivity among the native viruses. Local isolates differed from the prototype Singer strain in recognition by up to 14 mAbs. Only two mAbs - one to the non-structural protein NS23/p125 and another to the envelope glycoprotein E0/gp48 - recognized 100% of the isolates. No isolate was recognized by more than 14 mAbs and twelve viruses reacted with 10 or less mAbs. mAbs to the major envelope glycoprotein E2/gp53 revealed a particularly high degree of antigenic variability in this glycoprotein. Nine isolates (47.3%) reacted with three or less of 10 E2/gp53 mAbs, and one isolate was not recognized by any of these mAbs. Virus-specific antisera to eight isolates plus three standard BVDV strains raised in lambs had virus-neutralizing titers ranging from 400 to 3200 against the homologous virus. Nonetheless, many antisera showed significantly reduced neutralizing activity when tested against heterologous viruses. Up to 128-fold differences in cross-neutralization titers were observed for some pairs of viruses. When the coefficient of antigenic similarity (R) was calculated, 49 of 66 comparisons (74.24%) between viruses resulted in R values that antigenically distinguish strains. Moreover, one isolate had R values suggesting that it belongs to a distinct serologic group. The marked antigenic diversity observed among Brazilian BVDV isolates should be considered when planning diagnostic and immunization strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA plasmids encoding foreign proteins may be used as immunogens by direct intramuscular injection alone, or with various adjuvants and excipients, or by delivery of DNA-coated gold particles to the epidermis through biolistic immunization. Antibody, helper T lymphocyte, and cytotoxic T lymphocyte (CTL) responses have been induced in laboratory and domesticated animals by these methods. In a number of animal models, immune responses induced by DNA vaccination have been shown to be protective against challenge with various infectious agents. Immunization by injection of plasmids encoding foreign proteins has been used successfully as a research tool. This review summarizes the types of DNA vaccine vectors in common use, the immune responses and protective responses that have been obtained in animal models, the safety considerations pertinent to the evaluation of DNA vaccines in humans and the very limited information that is available from early clinical studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the clinical relevance of a semi-quantitative measurement of human cytomegalovirus (HCMV) DNA in renal transplant recipients within the typical clinical context of a developing country where virtually 100% of both receptors and donors are seropositive for this virus, we have undertaken HCMV DNA quantification using a simple, semi-quantitative, limiting dilution polymerase chain reaction (PCR). We evaluated this assay prospectively in 52 renal transplant patients from whom a total of 495 serial blood samples were collected. The samples scored HCMV positive by qualitative PCR had the levels of HCMV DNA determined by end-point dilution-PCR. All patients were HCMV DNA positive during the monitoring period and a diagnosis of symptomatic infection was made for 4 of 52 patients. In symptomatic patients the geometric mean of the highest level of HCMV DNAemia was 152,000 copies per 106 leukocytes, while for the asymptomatic group this value was 12,050. Symptomatic patients showed high, protracted HCMV DNA levels, whereas asymptomatic patients demonstrated intermittent low or moderate levels. Using a cut-off value of 100,000 copies per 106 leukocytes, the limiting dilution assay had sensitivity of 100%, specificity of 92%, a positive predictive value of 43% and a negative predictive value of 100% for HCMV disease. In this patient group, there was universal HCMV infection but relatively infrequent symptomatic HCMV disease. The two patient groups were readily distinguished by monitoring with the limiting dilution assay, an extremely simple technology immediately applicable in any clinical laboratory with PCR capability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three Brazilian isolates of bovine viral diarrhea virus (BVDV), antigenically distinct from the standard North American isolates, were selected to immunize BALB/c mice in order to obtain hybridoma cells secreting anti-BVDV monoclonal antibodies (mAbs). Two hybridoma clones secreting mAbs, reacting specifically with BVDV-infected cells (mAbs 3.1C4 and 6.F11), were selected after five fusions and screening of 1001 hypoxanthine-aminopterin-thymidine-resistant clones. These mAbs reacted in an indirect fluorescent antibody (IFA) assay with all 39 South and North American BVDV field isolates and reference strains available in our laboratory, yet failed to recognize other pestiviruses, namely the hog cholera virus. The mAbs reacted at dilutions up to 1:25,600 (ascitic fluid) and 1:100 (hybridoma culture supernatant) in IFA and immunoperoxidase (IPX) staining of BVDV-infected cells but only mAb 3.1C4 neutralized virus infectivity. Furthermore, both mAbs failed to recognize BVDV proteins by IPX in formalin-fixed paraffin-embedded tissues and following SDS-PAGE and immunoblot analysis of virus-infected cells, suggesting they are probably directed to conformational-type epitopes. The protein specificity of these mAbs was then determined by IFA staining of CV-1 cells transiently expressing each of the BVDV proteins: mAb 3.1C4 reacted with the structural protein E2/gp53 and mAb 6.F11 reacted with the structural protein E1/gp25. Both mAbs were shown to be of the IgG2a isotype. To our knowledge, these are the first mAbs produced against South American BVDV isolates and will certainly be useful for research and diagnostic purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exclusion of the transcription factor Max from the nucleus of retinal ganglion cells is an early, caspase-independent event of programmed cell death following damage to the optic axons. To test whether the loss of nuclear Max leads to a reduction in neuroprotection, we developed a procedure to overexpress Max protein in rat retinal tissue in vivo. A recombinant adeno-associated viral vector (rAAV) containing the max gene was constructed, and its efficiency was confirmed by transduction of HEK-293 cells. Retinal ganglion cells were accessed in vivo through intravitreal injections of the vector in rats. Overexpression of Max in ganglion cells was detected by immunohistochemistry at 2 weeks following rAAV injection. In retinal explants, the preparation of which causes damage to the optic axons, Max immunoreactivity was increased after 30 h in vitro, and correlated with the preservation of a healthy morphology in ganglion cells. The data show that the rAAV vector efficiently expresses Max in mammalian retinal ganglion cells, and support the hypothesis that the Max protein plays a protective role for retinal neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vaccine approaches to infectious diseases are widely applied and appreciated. Amongst them, vectors based on recombinant viruses have shown great promise and play an important role in the development of new vaccines. Many viruses have been investigated for their ability to express proteins from foreign pathogens and induce specific immunological responses against these antigens in vivo. Generally, gene-based vaccines can stimulate potent humoral and cellular immune responses and viral vectors might be an effective strategy for both the delivery of antigen-encoding genes and the facilitation and enhancement of antigen presentation. In order to be utilized as a vaccine carrier, the ideal viral vector should be safe and enable efficient presentation of required pathogen-specific antigens to the immune system. It should also exhibit low intrinsic immunogenicity to allow for its re-administration in order to boost relevant specific immune responses. Furthermore, the vector system must meet criteria that enable its production on a large-scale basis. Several viral vaccine vectors have thus emerged to date, all of them having relative advantages and limits depending on the proposed application, and thus far none of them have proven to be ideal vaccine carriers. In this review we describe the potential, as well as some of the foreseeable obstacles associated with viral vaccine vectors and their use in preventive medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the prevalence of HEV, TTV and GBV-C/GBV-C/HGV in patients with acute viral hepatitis A, B and non-A-C. We evaluated sera of 94 patients from a sentinel program who had acute hepatitis A (N = 40), B (N = 42) and non-A-C (N = 12); 71 blood donors served as controls. IgM and anti-HEV IgG antibodies were detected by enzyme immunoassay using commercial kits. TTV and GBV-C/HGV were detected by nested PCR; genotyping was done by sequencing and phylogenetic analysis. Anti-HEV IgG was present in 38, 10 and 17% of patients with hepatitis A, B and non-A-C. Four patients with hepatitis A and 1 with non-A-C hepatitis also had anti-HEV IgM detected in serum. TTV was detected in 21% of patients with acute hepatitis and in 31% of donors. GBV-C/HGV was detected in 9% of patients with hepatitis, and in 10% of donors. We found TTV isolates of genotypes 1, 2, 3, and 4 and GBV-C/HGV isolates of genotypes 1 and 2. Mean aminotransferase levels were lower in patients who were TTV or GBV-C/HGV positive. In conclusion, the detection of anti-HEV IgM in some acute hepatitis A cases suggests co-infection with HEV and hepatitis E could be the etiology of a few cases of sporadic non-A-C hepatitis in Salvador, Brazil. TTV genotype 1, 2, 3 and 4 isolates and GBV-C/HGV genotype 1 and 2 strains are frequent in the studied population. TTV and GBV-C/HGV infection does not appear to have a role in the etiology of acute hepatitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the human T-cell lymphotropic virus type I (HTLV-I) proviral DNA load among asymptomatic HTLV-I-infected carriers and patients with HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP), real time PCR using TaqMan probes for the pol gene was performed in two million peripheral blood mononuclear cells (PBMC). The albumin gene was the internal genomic control and MT2 cells were used as positive control. The results are reported as copies/10,000 PBMC, and the detection limit was 10 copies. A total of 89 subjects (44 HAM/TSP and 45 healthy HTLV-I-infected carriers) followed up at the Institute of Infectious Diseases "Emilio Ribas" and in the Neurology Division of Hospital of Clínicas were studied. The asymptomatic HTLV-I-infected carriers had a median number of 271 copies (ranging from 5 to 4756 copies), whereas the HAM/TSP cases presented a median of 679 copies (5-5360 copies) in 10,000 PBMC. Thus, HAM/TSP patients presented a significantly higher HTLV-I proviral DNA load than healthy HTLV-I carriers (P = 0.005, one-way Mann-Whitney test). As observed in other persistent infections, proviral DNA load quantification may be an important tool for monotoring HTLV-I-infected subjects. However, long-term follow-up is necessary to validate this assay in the clinical setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bovine herpesvirus type 5 (BHV-5) is a major agent of meningoencephalitis in cattle and establishes latent infections mainly in sensory nerve ganglia. The distribution of latent BHV-5 DNA in the brain of rabbits prior to and after virus reactivation was studied using a nested PCR. Fifteen rabbits inoculated intranasally with BHV-5 were euthanized 60 days post-inoculation (group A, N = 8) or submitted to dexamethasone treatment (2.6 mg kg-1 day-1, im, for 5 days) and euthanized 60 days later (group B, N = 7) for tissue examination. Two groups of BHV-1-infected rabbits (C, N = 3 and D, N = 3) submitted to each treatment were used as controls. Viral DNA of group A rabbits was consistently detected in trigeminal ganglia (8/8), frequently in cerebellum (5/8), anterior cerebral cortex and pons-medulla (3/8) and occasionally in dorsolateral (2/8), ventrolateral and posterior cerebral cortices, midbrain and thalamus (1/8). Viral DNA of group B rabbits showed a broader distribution, being detected at higher frequency in ventrolateral (6/7) and posterior cerebral cortices (5/7), pons-medulla (6/7), thalamus (4/7), and midbrain (3/7). In contrast, rabbits inoculated with BHV-1 harbored viral DNA almost completely restricted to trigeminal ganglia and the distribution did not change post-reactivation. These results demonstrate that latency by BHV-5 is established in several areas of the rabbit's brain and that virus reactivation leads to a broader distribution of latent viral DNA. Spread of virus from trigeminal ganglia and other areas of the brain likely contributes to this dissemination and may contribute to the recrudescence of neurological disease frequently observed upon BHV-5 reactivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Store-operated Ca2+ entry plays an important role in Ca2+ homeostasis in cells but the mechanisms of control of these channels are not completely understood. We describe an investigation of the role of the CD38-cyclic-ADP-ribose (cADPR)-ryanodine-channel (RyR) signaling pathway in store-operated Ca2+ entry in human smooth muscle. We observed that human myometrial cells have a functional store-operated Ca2+ entry mechanism. Furthermore, we observed the presence of transient receptor potential 1, 3, 4, 5, and 6 ion channels in human myometrial cells. Store-operated Ca2+ transient was inhibited by at least 50-70% by several inhibitors of the RyR, including ryanodine (10 µM), dantrolene (10 µM), and ruthenium red (10 µM). Furthermore, the cell permeable inhibitor of the cADPR-system, 8-Br-cADPR (100 µM), is a potent inhibitor of the store-operated entry, decreasing the store operated entry by 80%. Pre-incubation of cells with 100 µM cADPR and the hydrolysis-resistant cADPR analog 3-deaza-cADPR (50 µM), but not with ADP-ribose (ADPR) leads to a 1.6-fold increase in the store-operated Ca2+ transient. In addition, we observed that nicotinamide (1-10 mM), an inhibitor of cADPR synthesis, also leads to inhibition of the store-operated Ca2+ transient by 50-80%. Finally, we observed that the transient receptor potential channels, RyR, and CD38 can be co-immunoprecipitated, indicating that they interact in vivo. Our observations clearly implicate the CD38-cADPR-ryanodine signaling pathway in the regulation of store-operated Ca2+ entry in human smooth muscle cells.