110 resultados para surgical anatomy
Resumo:
The objective of this study was to make a quantitative assess of the anatomic characteristics of leaf blade of the sugarcane cultivars RB855113, SP80-1842, SP80-1816, RB867515 and clone RB957689 presenting different sensitivity to the mixture of sodium trifloxysulfuron + ametryn herbicides. Compared to the other cultivars assessed, RB855113 cultivar, considered more sensitive to the herbicide mixture, presented relevant differences such as greater proportion of bulliform cells, greater tissue proportion in the transverse section of the leaf blade, greater stomata and trichome density on both surfaces, thinner epidermis on the adaxial surface and length of stomata on both surfaces. The external paraclinal wall of the bulliform cells was thinner than in the common epidermis cells in all the genotypes on the adaxial and abaxial surfaces. Multivariate analysis of the data on the variables considered most relevant to explain the herbicide penetration singled out the sensitive RB855113 from the other materials. Such characteristics can explain the greater penetration, and consequently, greater sensitivity of this cultivar to the sodium trifloxysulfuron + ametryn mixture.
Resumo:
The species Lantana camara, commonly used as ornamental, has spread worldwide becoming one of the world's most important weeds. To develop new methods of control of this plant, it is essential to distinguish it from other species of the same genus, and this is usually accomplished through taxonomic studies of fertile samples. Considering the similarity between L. camara and L. radula, and the consequent difficulty in distinguishing one from the other when only sterile samples are available, this work aimed to investigate the use of the anatomical characteristics of the leaves of both species as tools for supporting correct classification. The leaves of L. camara and L. radula were anatomically examined by light microscopy and scanning electron microscopy. The major differences were observed in the petiole, which presented secretory idioblasts in L. camara. Secretory idioblasts were observed in the leaf blades of L. camara and Crystalliferou idioblasts were found in L. radula. Glandular and nonglandular trichomes as well as the abaxial surface are different in each species. Such results can support the strategies aiming at the control of L. camara without interfering with L. radula.
Resumo:
The objective of this work was to evaluate the effects of the population density of Typha angustifolia plants in the anatomical and physiological characteristics. Plants were collected from populations of high density (over 50% of colonization capacity) and low density (less than 50% of colonization capacity) and cultivated under controlled greenhouse conditions. Plants from both populations were grown in plastic trays containing 4 L of nutritive solution for 60 days. At the end of this period, the relative growth rate, leaf area ratio, net assimilatory rate, root/shoot ratio, leaf anatomy, root anatomy, and catalase and ascorbate peroxidase activities were evaluated. Plants from high density populations showed increased growth rate and root/shoot ratio. Low density populations showed higher values of stomatal index and density in leaves, as well as increased palisade parenchyma thickness. Root epidermis and exodermis thickness as well as the aerenchyma proportion of high density populations were reduced, these plants also showed increased vascular cylinder proportion. Only catalase activity was modified between the high and low density populations, showing increased values in low density populations. Therefore, different Typha angustifolia plants show differences in its anatomy and physiology related to its origins on high and low density conditions. High density population plants shows increased growth capacity related to lower apoplastic barriers in root and this may be related to increased nutrient uptake capacity.
Resumo:
Two species of Mandevilla from the savanna area of São Paulo State, Brazil were studied. These species have been prescribed as folk medicine as infusions or alcoholic extracts of the underground system for treatment of venomous snake bites. To explain the morphological nature of such a system, its ontogeny was described to determine which parts are involved in its formation. In both Mandevilla species examined, the underground system consists of a xylopodium whose basal region joins a tuberous root.
Resumo:
Morphological and anatomical features of roots, stems, leaves, and scapes were studied in Heliconia angusta and H. velloziana from the Atlantic forest in the southeastern of Brazil. Morphologically H. angusta and H. velloziana show differences in their sizes, blade shapes, number and shape of inflorescence bracts. On the other hand, they have common anatomical characteristics such as: roots with air-canals in the cortex; rhizomes with isolated fiber bundles, collateral vascular bundles, and uniseriate endodermis and pericycle; leaves presenting air-canals and collateral vascular bundles forming arcs, and thin-walled epidermal cells; scapes with collateral vascular and fiber bundles in the cortex. The distribution of the fiber bundles in the leaves and in the scapes was different for each species, having a taxonomical value, H. velloziana presenting continuous fiber bundles. Air-canals in roots and leaves with narrow mesophyll might be related to the moist understorey of the Atlantic forest habitats.
Resumo:
Leaves of Struthanthus vulgaris Mart. (Loranthaceae) exhibit galls induced by a Hymenoptera. These galls pass through five developmental stages. In the first stage, a small brown swelling is observed on the surface of the leaf. Internally, the chlorenchyma cells around the eggs of the gall-makers are divided. In the second stage, the gall enlarges and its surface assumes a wavy appearance with a depressed region in its center. Within this depression, an incompletely divided gall chamber with embryos is observed. Neoformed parenchyma is present around the chamber and the secondary walls of fibers and sclereids are no longer observed. The vascular parenchyma shows hyperplasia. In the third stage, the gall grows larger and adopts an ellipsoidal shape. Fissures appear on the gall epidermis and the neoformed parenchyma is conspicuous, with a cortical and a medullar region. In the medullar region, each gall chamber, with one inducer in larval phase, is lined with 1-2 layers of nutritive tissue. The gall is larger still at the fourth stage of development and a periderm coats most of the gall. New vascular bundles, sclereids, and fibers are formed. The gall-makers are in advanced larval phase and no nutritive tissue cells are observed. In the fifth stage, the gall reaches its definitive size and the inducers are in the pupa phase. At this stage, the cortical region undergoes slight hypertrophy. The senescent gall shows the orifices of the exit channel made by the adult gallmakers. The anatomical studies of the hymenopteran gall enabled to compare this gall with a dipteran one, previously discribed in the same plant host. It is suggested that during the maturation of the gall, specific key processes are triggered, which bring about a specific cecidogenesis.
Resumo:
A study on the vegetative organ anatomy of Ianthopappus corymbosus was conducted in order to provide a basis for comparison with the genus Richterago, since this species had been previously included in that genus. The anatomical characters of I. corymbosus that support its exclusion from the genus Richteragon are: epithelial cell organization of adventitious root secretory canals, non-glandular trichomes, and presence of cortical vascular bundles in the stem. In Ianthopappus corymbosus, the underground system consists of rhizophore from which adventitious roots branch off. The subapical meristem of the adventitious root revealed that the ground meristem forms the inner layer which in a meristematic phase, forms 2/3 of the cortex. This layer will differentiate in the endodermis, with Casparian strips, and is referred to as meristematic endodermis. Endodermic secretory canals, limited by four epithelial cells, appear in the region adjacent to the primary phloem.
Resumo:
The structure of the fruit and seed in development of Chorisia speciosa are described with the main purpose of clarifying the origin and nature of the hairs that cover the seeds and aiding future taxonomical and ecological studies of the group. The fruit is an ellipsoid loculicide capsule and presents the exocarp formed by 7-10 cells layers, with very thick walls and evident simple pits. A great number of mucilage secretory cavities and ramified vascular bundles, accompanied by fibers, occur in the parenchymatic mesocarp. The endocarp derives from the ventral epidermis of the ovary wall, whose cells undergo a gradual elongation, become lignified, and constitute the trichomes which cover the mature seeds. The fruit aperture occurs by means of a suture evident in the ovarian wall in the middle region of the carpel leaf. Anatropous and bitegmic ovules, provided by a hypostase, give rise to campilotropous and bitegmic seeds. The testa is uniseriate, the exotegmen is completely formed by macrosclereids, and mucilage secretory cavities occur in the mesotegmen. The endotegmen, which is differentiated in the endothelium, is crushed in the mature seed. The plicate embryo, which occupies practically the entire seminal cavity, is found between endosperm layers, both being rich in lipids.
Resumo:
Immature and mature leaves of juvenile and adult plants of Araucaria angustifolia (Araucariaceae) were observed with the objective of updating the morphoanatomical data of the leaves of this species, which were restricted to basic descriptions in previous studies. The observations, made in optical allowed to establish anatomical differences among mature leaves of juvenile and adult plants in relation to the number of palisade parenchimal layers, the number of compartmented cells and the transfusion tissue development. Epidermis, the albuminous cells, the phloem, and the transfusion tissue descriptions are in disagreement with the data obtained data by different authors. The epidermal tissue and the hypodermis differ entirely when the plant is still juvenile, being inferred that these tissues would soon perform the protection function against mechanical damages and water loss, the vital characteristics during the first development months of young offspring.
Resumo:
Erythroxylum ovalifolium is a woody shrub widespread in the "restinga", i.e. the open scrub vegetation of the Brazilian coastal sandy plains. We examined leaf anatomy variation of this species both within populations and between populations of three "restingas" in the state of Rio de Janeiro. Sites were ca.100 km far from each other and differed in regard to rainfall and vegetation structure: a dry, open site; a wet, dense site and an intermediate one. Microhabitats within sites were: (i) exposed to full irradiance, outside vegetation islands; (ii) partially exposed to full irradiance, at the border of vegetation islands; (iii) shaded, inside vegetation islands. Leaf anatomy parameters were measured for five leaves collected in each of five plants per microhabitat, in each population; they were thickness of the leaf blade, of the palisade and spongy parenchyma, and of the adaxial and abaxial epidermis. Leaves from the dry, open site had narrower abaxial epidermis and a smaller contribution of spongy parenchyma to total leaf blade thickeness than the other two sites, which we attributed to water stress. Adaxial epidermis and leaf are thicker in more exposed microhabitats (i and ii, above), irrespective of site. We proposed that between-site anatomical variation in traits related to water stress, and within-site anatomical variation in traits related to light-use are indicative of ecological plasticity and might help explain the high abundance of E. ovalifolium in the studied populations and along the State of Rio de Janeiro coast.
Resumo:
The ferns Anemia tomentosa (Sav.) Sw. var. anthriscifolia (Schrad.) Mickel and Anemia villosa Humb. & Bonpl. ex Willd. are widely associated with vegetation islands on rocky outcrops in Rio de Janeiro. Both species are desiccation tolerant. The leaf anatomy of these species was examined aiming to identify morphological characteristics that would allow the establishment of these species in water-scarce environments. The plants were harvested on "Pedra de Itacoatiara" and prepared according to the usual procedures. The petiole has a uniseriate epidermis with lignified cell walls, conical stegmata, and uniseriate multicelular and glandular trichomes. In A. villosa, the stomata protrude in a respiratory line. Under the epidermis the cells have thick, lignified walls. The parenchyma has phenolic compounds and starch grains. The petiole vascular bundles are surrounded by endodermis with Casparian strips and the xylem is V-shaped (A. villosa) or arc-shaped (A. tomentosa var. anthriscifolia). The leaf blades have a uniseriate epidermis with sinuous anticlinal and convex periclinal walls, conical stegmata and chloroplasts on both surfaces. The leaf margins of A. villosa have lignified cells. The guard cells of the stomata on the abaxial surface are on the same level or are raised above ordinary epidermal cells. Multicelular uniseriate trichomes and glandular hairs were observed. The dorsiventral mesophyll has loosely packed chlorenchyma with arm-shaped and H-shaped cells. The vascular bundles are surrounded by endodermis with Casparian strips and with parenchymatic extensions towards the epidermis. Anatomical results were analyzed considering the interaction of these plants with abiotic factors.
Resumo:
This paper describes the anatomy of the floral scape for 12 species of Bromeliaceae, belonging to the subfamilies Bromelioideae, Tillandsioideae and Pitcairnioideae. Although all the scapes have a similar organization, there are variations in the structure of the epidermis, cortex and vascular cylinder. Such variations are described for the studied scapes and, when considered together they can help to identify the species. These aspects are described for each scape and discussed under a taxonomic point of view.
Resumo:
This paper reports on the extrafloral nectary (EFN) of Hibiscus pernambucensis, a native shrub species occurring in mangrove and restinga along Brazil's coastline. EFNs occur as furrows with a protuberant border on the abaxial surface veins of the leaf blade. Each nectary consists of numerous secretory multicellular trichomes, epidermal cells in palisade-like arrangements and non-vascularized parenchyma tissue. Nectar secretion is prolonged, since secretion starts in very young leaves and remains up to completely expanded leaves. Reduced sugars, lipids, and proteins were histochemically detected in all the nectary cells; phenolic substances were detected in the vacuoles of the epidermal palisade cells and in some secretory trichome cells. The secretory cells that constitute the body of trichomes have large nuclei, dense cytoplasm with numerous mitochondria, dictyosomes, scattered lipid droplets and plastids with different inclusions: protein, lipid droplets or starch grains; vacuoles with different sizes have membranous material, phenolic and lipophilic substances. The palisade cells show thick periclinal walls, reduced cytoplasm with voluminous lipid drops and developed vacuoles. The nectary parenchyma cells contain abundant plasmodesmata and cytoplasm with scattered lipid droplets, mitochondria, plastids with starch grains and endoplasmic reticulum. Mucilage idioblasts are common in the inner nectary parenchyma. Protoderm and ground meristem participate in the formation of EFN. Our data indicate that all nectary regions are involved in nectar production and secretion, constituting a functional unit. Longevity of the extrafloral nectaries is likely associated with the presence of mucilage idioblasts, which increases the capacity of the nectary parenchyma to store water.
Resumo:
(Morphology and anatomy of the developing fruit of Maclura tinctoria, Moraceae). Maclura tinctoria (L.) D. Don ex Steudel was selected for the present study due of its economic and medicinal importance. The purpose of this investigation is to present a detailed description of the fruit development, specially by: (a) defining the fruit type presented by the species, and (b) characterizing the seed type of the species based upon the presence or not of mechanical tissue on the seed-coat. The fruit originates from the subglobose female inflorescence which consists of small unipistillate flowers with superior ovary, unilocular and uniovular apical placentation. The mature fruit is multiple, constituted of small drupes. The ovule is ana-campylotropous, suspended, bitegmic and crassinucellate. The mature seed is flattened, slightly ovated, cream colored, with unspecialized membrane coat with thin-walled cells more or less crushed. The seed has parenchymatic endosperm with lipophilic content. The embryo is straight, with two cotyledons of the same size. Ontogenetic studies reveal that the fruits are infrutescences. The fleshy edible part is derived from the perigone and inflorescence axis. The drupes consist of a single pyrene of macrosclereids.
Resumo:
A total of 302 patients with stage Ib and IIa cervical carcinoma were submitted to radical hysterectomy and lymphadenectomy during the period from 1980 to 1994. The morbidity rate was 37.5% and the mortality rate 0.6%. The most common intraoperative complications were injuries to the great pelvic vessels and the most frequent postoperative complications involved the urinary tract. The leading causes of morbidity were urinary infection (20.8%), bladder dysfunction (9.2%) and ureteral fistulas (2.9%). Although the rate of complications was high, morbidity has been decreasing over the last five years. Thus, radical hysterectomy continues to be one of the methods for the treatment of early cervical carcinoma that presents an acceptable 5-year survival rate.