123 resultados para slow release fertilizer
Resumo:
Two field experiments were conducted in two successive seasons, 2005/2006 and 2006/2007, to determine whether management can improve faba bean competitiveness with weeds, thus helping to achieve its yield potential. The experiment included five treatments, composed of organic and mineral fertilizers, alone and mixed at different rates, along with a control and six weed control treatments, including oxadiargyl, prometryn, hand hoeing treatments alone or mixed with the herbicides, and a nonweeded treatment (control).The herbicide treatments were not superior to the two hand-hoeing treatments. Using compost favored growth and yield of faba bean more than of weeds. Adding fertilizer also improved most yield parameters. Application of compost alone or combined with 50 or 100% of the recommended NPK rate improved faba bean growth in terms of net assimilation rate, specific leaf area, and leaf weight ratio as components of relative growth rate. This improvement in growth resulted in increase of seed yield, yield components and protein of faba bean. Faba bean yield performance improved under interactive fertilizer effects and weed control treatments as growth improved, as a result of nutrient release from fertilizers and weed control.
Resumo:
A field experiment was conducted for two consecutive years to study the effect of fertilizer application methods and inter and intra-row weed-crop competition durations on density and biomass of different weeds and growth, grain yield and yield components of maize. The experimental treatments comprised of two fertilizer application methods (side placement and below seed placement) and inter and intra-row weed-crop competition durations each for 15, 30, 45, and 60 days after emergence, as well as through the crop growing period. Fertilizer application method didn't affect weed density, biomass, and grain yield of maize. Below seed fertilizer placement generally resulted in less mean weed dry weight and more crop leaf area index, growth rate, grain weight per cob and 1000 grain weight. Minimum number of weeds and dry weight were recorded in inter-row or intra-row weed-crop competition for 15 DAE. Number of cobs per plant, grain weight per cob, 1000 grain weight and grain yield decreased with an increase in both inter-row and intra-row weed-crop competition durations. Maximum mean grain yield of 6.35 and 6.33 tha-1 were recorded in inter-row and intra-row weed competition for 15 DAE, respectively.
Resumo:
The effect of iron-ore particles on the propagule release and growth of Sargassum vulgare C. Agardh was tested under treatments with different concentrations of iron-ore particles: 0.1, 1.0, 10.0 g.L-1 and a solution of 10.0 g.L-1 of filtered iron-ore. Filtered seawater was used as control. Photosynthesis vs. irradiance (P-I) curves were calculated for S. vulgare in the presence of iron-ore and in seawater. There was no significant difference in the number of propagules released by the receptacles or in the percentage of zygote formation among the treatments. The released propagules acted like aggregation centers for the particles, those more heavily coated with iron (10.0 g.L-1) exhibiting the highest sinking velocity (32.6 ± 9.8 mm.s-1). No difference in the percentage of embryo survival was detected during the first week in culture. After four weeks the embryos grew in all treatments. Maximum frond development (5.3 ± 0.8 mm) was observed in treatment of seawater enriched with Provasoli's medium (PES) while initial filoids did not develop in three treatments without PES and with iron-ore (0.1 g.L-1, 1.0 g.L-1 and 10.0 g.L-1). The values for Pmax, alpha and respiration showed no significant differences between the P-I curves. The calculated value for I K was 106.26 µmol.m-2.s-1 to the control curve and 981.49 µmol.m-2.s-1 to the iron-ore curve. The results indicate that the iron-ore particles in high concentration reduce the growth of S. vulgare as they recovered the embryos, juveniles and young plants. In contrast, the presence of the particles did not affect the release of gametes, percentage of zygote formation or the percentage of embryo survival.
Resumo:
Sperm-surface glycopeptides were obtained from intact sperm membranes after proteolytic release by different enzymatic treatments such as autoproteolysis, trypsin, papain and pronase. Glycopeptides were isolated, their properties and composition were examined, and their monosaccharide and amino acid constituents were characterized. The monosaccharides identified were fucose, mannose, galactose, N-acetylglucosamine, and N-acetylgalactosamine, which form part of more than one type of oligosaccharide units. Autoproteolytic treatment mainly provided O-glycosidic type oligosaccharides, while a mixture of O- and N-glycosidic oligosaccharides was obtained in variable proportions when treated with trypsin, papain or pronase. The highest degree of peptide cleavage was obtained with pronase. Despite the higher yields reached with trypsin, these glycopeptides contain the lowest percentage of oligosaccharide chains. Proteolytic treatment provides a simple, rapid procedure for the isolation of glycopeptides from the sperm surface
Resumo:
Neurons which release atrial natriuretic peptide (ANPergic neurons) have their cell bodies in the paraventricular nucleus and in a region extending rostrally and ventrally to the anteroventral third ventricular (AV3V) region with axons which project to the median eminence and neural lobe of the pituitary gland. These neurons act to inhibit water and salt intake by blocking the action of angiotensin II. They also act, after their release into hypophyseal portal vessels, to inhibit stress-induced ACTH release, to augment prolactin release, and to inhibit the release of LHRH and growth hormone-releasing hormone. Stimulation of neurons in the AV3V region causes natriuresis and an increase in circulating ANP, whereas lesions in the AV3V region and caudally in the median eminence or neural lobe decrease resting ANP release and the response to blood volume expansion. The ANP neurons play a crucial role in blood volume expansion-induced release of ANP and natriuresis since this response can be blocked by intraventricular (3V) injection of antisera directed against the peptide. Blood volume expansion activates baroreceptor input via the carotid, aortic and renal baroreceptors, which provides stimulation of noradrenergic neurons in the locus coeruleus and possibly also serotonergic neurons in the raphe nuclei. These project to the hypothalamus to activate cholinergic neurons which then stimulate the ANPergic neurons. The ANP neurons stimulate the oxytocinergic neurons in the paraventricular and supraoptic nuclei to release oxytocin from the neural lobe which circulates to the atria to stimulate the release of ANP. ANP causes a rapid reduction in effective circulating blood volume by releasing cyclic GMP which dilates peripheral vessels and also acts within the heart to slow its rate and atrial force of contraction. The released ANP circulates to the kidney where it acts through cyclic GMP to produce natriuresis and a return to normal blood volume
Resumo:
Nitric oxide synthase (NOS)-containing neurons have been localized in various parts of the CNS. These neurons occur in the hypothalamus, mostly in the paraventricular and supraoptic nuclei and their axons project to the neural lobe of the pituitary gland. We have found that nitric oxide (NO) controls luteinizing hormone-releasing hormone (LHRH) release from the hypothalamus acting as a signal transducer in norepinephrine (NE)-induced LHRH release. LHRH not only releases LH from the pituitary but also induces sexual behavior. On the other hand, it is known that oxytocin also stimulates mating behavior and there is some evidence that oxytocin can increase NE release. Therefore, it occurred to us that oxytocin may also stimulate LHRH release via NE and NO. To test this hypothesis, we incubated medial basal hypothalamic (MBH) explants from adult male rats in vitro. Following a preincubation period of 30 min, MBH fragments were incubated in Krebs-Ringer bicarbonate buffer in the presence of various concentrations of oxytocin. Oxytocin released LHRH at concentrations ranging from 0.1 nM to 1 µM with a maximal stimulatory effect (P<0.001) at 0.1 µM, but with no stimulatory effect at 10 µM. That these effects were mediated by NO was shown by the fact that incubation of the tissues with NG-monomethyl-L-arginine (NMMA), a competitive inhibitor of NOS, blocked the stimulatory effects. Furthermore, the release of LHRH by oxytocin was also blocked by prazocin, an a1-adrenergic receptor antagonist, indicating that NE mediated this effect. Oxytocin at the same concentrations also increased the activity of NOS (P<0.01) as measured by the conversion of [14C]arginine to citrulline, which is produced in equimolar amounts with NO by the action of NOS. The release of LHRH induced by oxytocin was also accompanied by a significant (P<0.02) increase in the release of prostaglandin E2 (PGE2), a mediator of LHRH release that is released by NO. On the other hand, incubation of neural lobes with various concentrations of sodium nitroprusside (NP) (300 or 600 µM), a releaser of NO, revealed that NO acts to suppress (P<0.01) the release of oxytocin. Therefore, our results indicate that oxytocin releases LHRH by stimulating NOS via NE, resulting in an increased release of NO, which increases PGE2 release that in turn induces LHRH release. Furthermore, the released NO can act back on oxytocinergic terminals to suppress the release of oxytocin in an ultrashort-loop negative feedback
Resumo:
The existence of a circadian rhythm of atrial natriuretic peptide (ANP) in humans is controversial. We studied the plasma ANP response to isotonic blood volume expansion in the morning and in the afternoon and its relationship with adrenocorticotropic hormone (ACTH)-cortisol diurnal variation in seven normal subjects. Basal plasma ANP level was similar in the morning (19.6 ± 2.4 pg/ml) and in the afternoon (21.8 ± 4.8 pg/ml). The ANP peak obtained with saline infusion (0.9% NaCl, 12 ml/kg) in the morning (49.4 ± 8 pg/ml) did not differ from that obtained in the afternoon (60.3 ± 10.1 pg/ml). There was no correlation between the individual mean cortisol and ACTH levels and the ANP peak obtained with saline infusion. These data indicate no diurnal variation in plasma ANP secretion induced by blood volume expansion and no relationship between plasma ANP peak and ACTH-cortisol diurnal variation
Resumo:
Fencamfamine (FCF) is a central stimulant that facilitates central dopaminergic transmission through inhibition of dopamine uptake and enhanced release of the transmitter. We evaluated the changes in the inhibition of uptake and the release of striatal [3H]-dopamine at 9:00 and 21:00 h, times corresponding to maximal and minimal behavioral responses to FCF, respectively. Adult male Wistar rats (200-250 g) maintained on a 12-h light/12-h dark cycle (lights on at 7:00 h) were used. In the behavioral experiments the rats (N = 8 for each group) received FCF (3.5 mg/kg, ip) or saline at 9:00 or 21:00 h. Fifteen minutes after treatment the duration of activity (sniffing, rearing and locomotion) was recorded for 120 min. The basal motor activity was higher (28.6 ± 4.2 vs 8.4 ± 3.5 s) after saline administration at 21:00 h than at 9:00 h. FCF at a single dose significantly enhanced the basal motor activity (38.3 ± 4.5 vs 8.4 ± 3.5 s) and increased the duration of exploratory activity (38.3 ± 4.5 vs 32.1 ± 4.6 s) during the light, but not the dark phase. Two other groups of rats (N = 6 for each group) were decapitated at 9:00 and 21:00 h and striata were dissected for dopamine uptake and release assays. The inhibition of uptake and release of [3H]-dopamine were higher at 9:00 than at 21:00 h, suggesting that uptake inhibition and the release properties of FCF undergo daily variation. These data suggest that the circadian time-dependent effects of FCF might be related to a higher susceptibility of dopamine presynaptic terminals to the action of FCF during the light phase which corresponds to the rats' resting period
Resumo:
Human skinned muscle fibers were used to investigate the effects of bovine serum albumin (BSA) on the tension/pCa relationship and on the functional properties of the Ca2+-release channel of the sarcoplasmic reticulum (SR). In both fast- and slow-type fibers, identified by their tension response to pSr 5.0, BSA (0.7-15 µM) had no effect on the Ca2+ affinity of the contractile proteins and elicited no tension per se in Ca2+-loaded fibers. In contrast, BSA (>1.0 µM) potentiated the caffeine-induced tension in Ca2+-loaded fibers, this effect being more intense in slow-type fibers. Thus, BSA reduced the threshold caffeine concentration required for eliciting detectable tension, and increased the amplitude, the rate of rise and the area under the curve of caffeine-induced tension. BSA also potentiated the tension elicited in Ca2+-loaded fibers by low-Mgv solutions containing 1.0 mM free ATP. These results suggest that BSA modulates the response of the human skeletal muscle SR Ca2+-release channel to activators such as caffeine and ATP.
Resumo:
The influence of voltage on the conductance of toad skin was studied to identify the time course of the activation/deactivation dynamics of voltage-dependent Cl- channels located in the apical membrane of mitochondrion-rich cells in this tissue. Positive apical voltage induced an important conductance inhibition which took a few seconds to fully develop and was instantaneously released by pulse inversion to negative voltage, indicating a short-duration memory of the inhibiting factors. Sinusoidal stimulation at 23.4 mM [Cl-] showed hysteresis in the current versus voltage curves, even at very low frequency, suggesting that the rate of voltage application was also relevant for the inhibition/releasing effect to develop. We conclude that the voltage modulation of apical Cl- permeability is essentially a fast process and the apparent slow components of activation/deactivation obtained in the whole skin are a consequence of a gradual voltage build-up across the apical membrane due to voltage sharing between apical and basolateral membranes
Resumo:
In awake rats a single recurrent larger tidal volume (deep breaths) occurs at regular intervals, followed by oscillations in arterial pressure and heart rate. In the present study we recorded the changes in blood pressure, heart rate and ventilation during the wakefulness-sleep cycle identified by electrocorticographic records in order to determine whether the deep breaths and cardiovascular oscillations were associated with changes in the electrocorticogram. During several episodes of slow-wave sleep (SWS) in 7 rats the deep breaths and oscillations in arterial pressure and heart rate were preceded by SWS desynchronization. The interval between deep breaths during SWS was 71 ± 4 s, the period between initial desynchronization and the generation of deep breaths was 3.98 ± 0.45 s and the duration of SWS desynchronization was 11 ± 0.65 s. Hypotension (-16 ± 1 mmHg) and tachycardia (+15 ± 5 bpm) were observed during deep breaths in the SWS state. These data indicate that the oscillations in arterial pressure and heart rate during SWS are associated with deep breaths, which in turn are preceded by desynchronization of the electrocorticogram in this state of sleep
Resumo:
Successful vaccine application means maximum protection with minimal number of administrations. A rational development of vaccines involves studies of the nature of the antigen as well as of the adjuvant to be used to improve the immune responses. This has provided the impetus for studies to design the degradable devices and for different approaches to antigen delivery by different routes of administration. The development of controlled release systems based on polymeric devices that permit a sustained or pulsed release of encapsulated antigens has attracted much interest. Polymeric delivery systems consist of polymers that release their content continuously in a controlled manner over a period of time. The development of a biocompatible delivery system for parenteral administration offers several advantages in terms of immunoadjuvanticity over other compounds. It was found that, in contrast to other carriers, microspheres are more stable, thus permitting administration by the oral or parenteral route. In the present study, we describe the main characteristics and potentialities of this new immunoadjuvant for oral and parenteral administration.
Resumo:
The objective of this prospective study was to evaluate the efficacy and complications of the use of an intraocular sustained-release ganciclovir implant for the treatment of active cytomegalovirus (CMV) retinitis in AIDS patients. Thirty-nine eyes of 26 patients were submitted to ocular surgery. All patients underwent complete ocular examination before and after surgery. The surgical procedure was always done under local anesthesia using the same technique. The mean time for the surgical procedure was 20 min (range, 15 to 30 min). The average follow-up period was 3.7 months. Of all patient, only 4 presented recurrence of retinitis after 8, 8, 9 and 2 months, respectively. Three of them received a successful second implant. All 39 eyes of the 26 patients presented healing of retinitis as shown by clinical improvement evaluated by indirect binocular ophthalmoscopy and retinography. Retinitis healed within a period of 4 to 6 weeks in all patients, with clinical regression signs from the third week on. Six (15.4%) eyes developed retinal detachment. None of the patients developed CMV retinitis in the contralateral eye. The intraocular implant proved to be effective in controlling the progression of retinitis for a period of up to 8 months even in patients for whom systemic therapy with either ganciclovir or foscarnet or both had failed. The intraocular sustained-release ganciclovir implant proved to be a safe new procedure for the treatment of CMV retinitis, avoiding the systemic side effects caused by the intravenous medications and improving the quality of life of the patients.
Resumo:
Etofibrate is a hybrid drug which combines niacin with clofibrate. After contact with plasma hydrolases, both constituents are gradually released in a controlled-release manner. In this study, we compared the effects of etofibrate and controlled-release niacin on lipid profile and plasma lipoprotein (a) (Lp(a)) levels of patients with triglyceride levels of 200 to 400 mg/dl, total cholesterol above 240 mg/dl and Lp(a) above 40 mg/dl. These patients were randomly assigned to a double-blind 16-week treatment period with etofibrate (500 mg twice daily, N = 14) or niacin (500 mg twice daily, N = 11). In both treatment groups total cholesterol, VLDL cholesterol and triglycerides were equally reduced and high-density lipoprotein cholesterol was increased. Etofibrate, but not niacin, reduced Lp(a) by 26% and low-density lipoprotein (LDL) cholesterol by 23%. The hybrid compound etofibrate produced a more effective reduction in plasma LDL cholesterol and Lp(a) levels than controlled-release niacin in type IIb dyslipidemic subjects.
Resumo:
Previous studies have shown that exogenously generated nitric oxide (NO) inhibits smooth muscle cell proliferation. In the present study, we stimulated rabbit vascular smooth muscle cells (RVSMC) with E. coli lipopolysaccharide (LPS), a known inducer of NO synthase transcription, and established a connection between endogenous NO, phosphorylation/dephosphorylation-mediated signaling pathways, and DNA synthesis. Non-confluent RVSMC were cultured with 0, 5, 10, or 100 ng/ml of the endotoxin. NO release was increased by 86.6% (maximum effect) in low-density cell cultures stimulated with 10 ng/ml LPS as compared to non-stimulated controls. Conversely, LPS (5 to 100 ng/ml) did not lead to enhanced NO production in multilayered (high density) RVSMC. DNA synthesis measured by thymidine incorporation showed that LPS was mitogenic only to non-confluent RVSMC; furthermore, the effect was prevented statistically by aminoguanidine (AG), a potent inhibitor of the inducible NO synthase, and oxyhemoglobin, an NO scavenger. Finally, there was a cell density-dependent LPS effect on protein tyrosine phosphatase (PTP) and ERK1/ERK2 mitogen-activated protein (MAP) kinase activities. Short-term transient stimulation of ERK1/ERK2 MAP kinases was maximal at 12 min in non-confluent RVSMC and was prevented by preincubation with AG, whereas PTP activities were inhibited in these cells after 24-h LPS stimulation. Conversely, no significant LPS-mediated changes in kinase or phosphatase activities were observed in high-density cells. LPS-induced NO generation by RVSMC may switch on a cell density-dependent proliferative signaling cascade, which involves the participation of PTP and the ERK1/ERK2 MAP kinases.