135 resultados para silica gel
Resumo:
O objetivo deste trabalho foi avaliar alterações fisiológicas e bioquímicas em sementes de café submetidas à secagem rápida, em sílica gel, e à secagem lenta, em soluções salinas saturadas. As sementes foram secas até que atingissem os seguintes teores de água: 40, 30, 20, 15, 10 e 5% (base úmida). Após a secagem, uma parte das sementes foi imediatamente avaliada quanto ao desempenho fisiológico e ao perfil de enzimas do processo oxidativo, e outra parte foi avaliada após armazenagem em condição hermética, em câmara fria e seca, por quatro meses. A velocidade de secagem e o teor final de água tiveram efeito significativo sobre a qualidade fisiológica das sementes. Após a secagem rápida em sílica gel, as sementes toleraram teores finais de água mais baixos. No entanto, após a secagem lenta, as sementes com teores finais de água mais elevados apresentaram maior qualidade. O período de armazenamento não afetou a germinação, mas prejudicou o vigor das sementes. A secagem rápida apresenta maior potencial de dano ao endosperma do que aos embriões. O perfil enzimático das sementes de café é afetado pelo teor final de água e pela velocidade de secagem.
Resumo:
Lipases have been immobilized in microemulsion-based organogels (MBG's) and successfully utilized for the enantioselective esterification, diesterification and transesterification reactions, in organic solvents at 25ºC. This methodology is described as a new alternative for the use of enzymes in organic solvents. High enzymic stability has been observed. We have also used this methodology for the successful resolution of chiral secondary alcohols. This is a convenient way of using this catalyst in organic solvents which employs small amounts of the enzyme (250mg/mL).
Resumo:
Fabrication of new optical devices based upon the incorporation of rare earth ions via sol-gel methods depends on elimination of dopant ion clusters and residual hydroxyl groups from the final material. The optical absorption and/or luminescence properties of luminescent rare earth ions are influenced by the local bonding environment and the distribution of the rare-earth dopants in the matrix. Typically, dopants are incorporated into gel via dissolution of soluble species into the initial precursor sol. In this work, Eu3+ is used as optical probe, to assess changes in the local environment. Results of emission, excitation, fluorescence line narrowing and lifetimes studies of Eu3+-doped gels derived from Si(OCH3)4 and fluorinated/chelate Eu3+ precursors are presented. The precursors used in the sol-gel synthesis were: tris (6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate) Eu(III), Eu (III) trifluoromethanesulfonate, Eu(III) acetylacetonate hydrate, Eu (III) trifluoroacetate trihidrate, tris (2,2,6,6-tetramethyl-3,5- heptanedionate) Eu(III) and Eu(NO3)3.6H2O. The results were interpreted in terms of the evolution of the Eu3+ fluorescence in systems varying from solution to the gels densified to 800ºC. The lifetimes studies indicate that the fluorinated precursors are effective at reducing the water content in densified gels.
Resumo:
The phase diagram formation of microemulsion-based gels composed of an anionic surfactant aerosol-OT sodium bis (2-ethylhexyl)-sulphosuccinate), water, gelatin and an organic solvent is presented for heptane. The stability of this organo- gel, when an enzyme is immobilized is discussed in terms of its reutilization in various esters synthesis.
Resumo:
An overview of the experimental procedures to prepare lamellar samples of silica, as well as the reactivity and possible applications of this kind of material is presented. Special attention is focused on the obtained materials by using neutral dialkylamine route through sol-gel process.
Resumo:
Titanium dioxide was prepared by hydrolysis and polycondensation of titanium tetraisopropoxide. TiO2 films were obtained by spin coating of the precursor solution on ITO substractes (glass covered with indium doped tin oxide). Films were prepared using different temperatures and hydrochloric acid contents. The effect of the drying temperature of the films (100 or 400ºC) was also investigated. TiO2 films were characterized by cyclic voltammetry, chronoamperometry, ultraviolete-visible spectroscopy, scanning electron microscopy and X-ray diffractrometry.
Resumo:
In this work, samples of chitosan obtained in different conditions were characterized by molecular weight distribution, using Gel Permeation Chromatography (GPC), in two different solvents. It was observed that the increase in the number of deacetylation steps promotes a increase in the degree of deacetylation followed by a decrease in the average of molecular weight and polydispersion. The GPC curves obtained for chitosan samples in the two solvents used (CH3COOH 0.30 mol/dm³ - CH3CONa 0.20 mol/dm³ and CH3COOH 0.10 mol/dm³ - NaCl 0.20 mol/dm³) showed small difference in elution volume, but significant changes in the average molecular weight (Mn and Mw) and polydispersion that, in agree with the values of Huggins constant, present evidences of chitosan aggregates formation in the second solvent.
Resumo:
This work describes a modified sol-gel method for the preparation of V2O5/TiO2 catalysts. The samples have been characterized by N2 adsorption at 77K, x-ray diffractometry (XRD) and Fourier Transform Infrared (FT-IR). The surface area increases with the vanadia loading from 24 m² g-1, for pure TiO2, to 87 m² g-1 for 9wt.% of V2O5. The rutile form is predominant for pure TiO2 but became enriched with anatase phase when vanadia loading is increased. No crystalline V2O5 phase was observed in the catalysts diffractograms. Two species of surface vanadium observed by FT-IR spectroscopy a monomeric vanadyl and polymeric vanadates, the vanadyl/vanadate ratio remains practically constant.
Resumo:
The use of sol-gel materials to develop new biosensors has received great attention due to its characteristics and versatility of sol-gel process. An overview is presented of the state-of-the-art of electrochemical biosensors employing sol-gel materials. Low-temperature, porous sol-gel ceramics represent a new class for the immobilization of biomolecules. The rational design of sol-gel sensing materials, based on the judicious choice of the starting alkoxide, encapsulated reagents, and preparation conditions, allows tailoring of material properties in a wide range, and offers great potential for the development of electrochemical biosensors.
Resumo:
Titania powders were synthesized by a sol-gel process using titanium tetrabutoxide as precursor. The syntheses were performed in water or in solutions of dimethylformamide (dmf) or dimethylsulfoxide (dmso). It is demonstrated, by X-ray diffraction patterns of the synthesized powders, that the samples obtained in dmf or dmso solutions are crystalline (anatase phase) with some minor amount of brookite phase, whereas the sample synthesized in water is amorphous. The anatase phase can be obtained independently of any previous or further treatment of the synthesized powder, such as hydrothermal or heat treatment, providing a new, simple, quick and inexpensive route to synthesize anatase powders. From the peak broadening of the anatase (101) diffraction, the crystallite sizes were calculated as 6 nm.
Resumo:
An overview about the role of alkoxides in the most recent uses of the sol-gel process in the synthesis of new materials is presented. Special attention is focused on the uses of silicon, aluminum, zirconium and titanium alkoxides. This review shows that the alkoxides enable the synthesis of new matrices with controlled surface area, acidity and porosity, as well as some unusual properties. The property associated with the solubility of metal alkoxides opens enormous possibilities of combining them for the synthesis films of powders with a very large range of metal compositions.
Resumo:
Ultra-trace amounts of Cu(II) were separated and preconcentrated by solid phase extraction on octadecyl-bonded silica membrane disks modified with a new Schiff,s base (Bis- (2-Hydroxyacetophenone) -2,2-dimethyl-1,3-propanediimine) (SBTD) followed by elution and inductively coupled plasma atomic emission spectrometric detection. The method was applied as a separation and detection method for copper(II) in environmental and biological samples. Extraction efficiency and the influence of sample matrix, flow rate, pH, and type and minimum amount of stripping acid were investigated. The concentration factor and detection limit of the proposed method are 500 and 12.5 pg mL-1, respectively.
Resumo:
Chromium(III) at the ng L-1 level was extracted using partially silylated MCM-41 modified by a tetraazamacrocyclic compound (TAMC) and determined by inductively coupled plasma optical emision spectrometry (ICP OES). The extraction time and efficiency, pH and flow rate, type and minimum amount of stripping acid, and break- through volume were investigated. The method's enrichment factor and detection limit are 300 and 45.5 pg mL-1, respectively. The maximum capacity of the 10 mg of modified silylated MCM-41 was found to be 400.5±4.7 µg for Cr(III). The method was applied to the determination of Cr(III) and Cr(VI) in the wastewater of the chromium electroplating industry and in environmental and biological samples (black tea, hot and black pepper).
Resumo:
Usually, the concepts of the Sol-Gel technique are not applied in experimental chemistry courses. This work presents a feasible experiment for chemistry instruction, which involves the synthesis of luminescent materials - Zn2SiO4, with and without Mn2+ as a dopant - by the Sol-Gel technique. The obtained materials were analyzed by scanning electron microscopy, X-Ray diffraction, IR spectroscopy and luminescence measures by UV-vis spectroscopy. The results allow the students to confirm the luminescent properties of the zinc orthosilicate luminophores as well as the structural features expected from literature data.
Resumo:
The goal of this study was to produce and characterize a new microemulsion gel-like carrier system (MEG) by using the pseudo-ternary phase-diagram concept. The diclofenac diethylamine (DDA) was incorporated in the MEG and its in vitro release and permeation profiles were performed using Franz-type diffusion cells. The results revealed that the commercial DDA emulgel provided significantly higher Kp of DDA (2.2-fold) as compared to the MEG. Similar data were obtained in the permeation studies in which DDA Kp 4.7-fold higher. Therefore, MEG presents higher potential as a topical delivery system for DDA when compared to the commercial DDA emulgel.