101 resultados para sarcolemmal permeability
Resumo:
We studied the effects of the acute administration of small doses of lead over time on hemodynamic parameters in anesthetized rats to determine if myocardial contractility changes are dependent or not on the development of hypertension. Male Wistar rats received 320 µg/kg lead acetateiv once, and their hemodynamic parameters were measured for 2 h. Cardiac contractility was evaluated in vitro using left ventricular papillary muscles as were Na+,K+-ATPase and myosin Ca2+-ATPase activities. Lead increased left- (control: 112 ± 3.7 vs lead: 129 ± 3.2 mmHg) and right-ventricular systolic pressures (control: 28 ± 1.2vs lead: 34 ± 1.2 mmHg) significantly without modifying heart rate. Papillary muscles were exposed to 8 µM lead acetate and evaluated 60 min later. Isometric contractions increased (control: 0.546 ± 0.07 vs lead: 0.608 ± 0.06 g/mg) and time to peak tension decreased (control: 268 ± 13vs lead: 227 ± 5.58 ms), but relaxation time was unchanged. Post-pause potentiation was similar between groups (n = 6 per group), suggesting no change in sarcoplasmic reticulum activity, evaluated indirectly by this protocol. After 1-h exposure to lead acetate, the papillary muscles became hyperactive in response to a β-adrenergic agonist (10 µM isoproterenol). In addition, post-rest contractions decreased, suggesting a reduction in sarcolemmal calcium influx. The heart samples treated with 8 µM lead acetate presented increased Na+,K+-ATPase (approximately 140%, P < 0.05 for control vs lead) and myosin ATPase (approximately 30%, P < 0.05 for control vs lead) activity. Our results indicated that acute exposure to low lead concentrations produces direct positive inotropic and lusitropic effects on myocardial contractility and increases the right and left ventricular systolic pressure, thus potentially contributing to the early development of hypertension.
Resumo:
Recent studies have revealed that an intrinsic apoptotic signaling cascade is involved in vascular hyperpermeability and endothelial barrier dysfunction. Propofol (2,6-diisopropylphenol) has also been reported to inhibit apoptotic signaling by regulating mitochondrial permeability transition pore (mPTP) opening and caspase-3 activation. Here, we investigated whether propofol could alleviate burn serum-induced endothelial hyperpermeability through the inhibition of the intrinsic apoptotic signaling cascade. Rat lung microvascular endothelial cells (RLMVECs) were pretreated with propofol at various concentrations, followed by stimulation with burn serum, obtained from burn-injury rats. Monolayer permeability was determined by transendothelial electrical resistance. Mitochondrial release of cytochrome C was measured by ELISA. Bax and Bcl-2 expression and mitochondrial release of second mitochondrial-derived activator of caspases (smac) were detected by Western blotting. Caspase-3 activity was assessed by fluorometric assay; mitochondrial membrane potential (Δψm) was determined with JC-1 (a potential-sensitive fluorescent dye). Intracellular ATP content was assayed using a commercial kit, and reactive oxygen species (ROS) were measured by dichlorodihydrofluorescein diacetate (DCFH-DA). Burn serum significantly increased monolayer permeability (P<0.05), and this effect could be inhibited by propofol (P<0.05). Compared with a sham treatment group, intrinsic apoptotic signaling activation - indicated by Bax overexpression, Bcl-2 downregulation, Δψm reduction, decreased intracellular ATP level, increased cytosolic cytochrome C and smac, and caspase-3 activation - was observed in the vehicle group. Propofol not only attenuated these alterations (P<0.05 for all), but also significantly decreased burn-induced ROS production (P<0.05). Propofol attenuated burn-induced RLMVEC monolayer hyperpermeability by regulating the intrinsic apoptotic signaling pathway.
Resumo:
Various methods are available for preservation of vascular grafts for pulmonary artery (PA) replacement. Lyophilization and cryopreservation reduce antigenicity and prevent thrombosis and calcification in vascular grafts, so both methods can be used to obtain vascular bioprostheses. We evaluated the hemodynamic, gasometric, imaging, and macroscopic and microscopic findings produced by PA reconstruction with lyophilized (LyoPA) grafts and cryopreserved (CryoPA) grafts in dogs. Eighteen healthy crossbred adult dogs of both sexes weighing between 18 and 20 kg were used and divided into three groups of six: group I, PA section and reanastomosis; group II, PA resection and reconstruction with LyoPA allograft; group III, PA resection and reconstruction with CryoPA allograft. Dogs were evaluated 4 weeks after surgery, and the status of the graft and vascular anastomosis were examined macroscopically and microscopically. No clinical, radiologic, or blood-gas abnormalities were observed during the study. The mean pulmonary artery pressure (MPAP) in group III increased significantly at the end of the study compared with baseline (P=0.02) and final [P=0.007, two-way repeat-measures analysis of variance (RM ANOVA)] values. Pulmonary vascular resistance of groups II and III increased immediately after reperfusion and also at the end of the study compared to baseline. The increase shown by group III vs group I was significant only if compared with after surgery and study end (P=0.016 and P=0.005, respectively, two-way RM ANOVA). Microscopically, permeability was reduced by ≤75% in group III. In conclusion, substitution of PAs with LyoPA grafts is technically feasible and clinically promising.
Resumo:
Edible films based on gluten from four types of Brazilian wheat gluten (2 "semi-hard" and 2 "soft") were prepared and mechanical and barrier properties were compared with those of wheat gluten films with vital gluten. Water vapor, oxygen permeability, tensile strength and percent elongation at break, solubility in water and surface morphology were measured. The films from "semi-hard" wheat flours showed similar water vapor permeability and solubility in water to films from vital gluten and better tensile strength than the films from "soft" and vital gluten. The films from vital gluten had higher elongation at break and oxygen permeability and also lower solubility in water than the films from the Brazilian wheat "soft" flours. In spite of the vital gluten showed greater mechanical resistance, desirable for the bakery products, for the purpose of developing gluten films Brazilian "semi-hard" wheat flours can be used instead of vital gluten, since they showed similar barrier and mechanical properties.
Resumo:
Brazil is the second soybean (Glycine max L. Merrill) producer and exporter in the world. In 2005, soybean cultivated in the southeastern region of the country suffered drought stress imposed by adverse high temperatures and low humidity during its reproductive stage. Little information is available regarding the effect of drought stress on the quality of grains. In this study chemical and biochemical characteristics of five soybean samples belonging to three different cultivars grown under drought stress were evaluated. The samples did not meet standards for marketing and contained high amounts of green seeds. Grains were analyzed for appearance, 100 seed weight, humidity, water activity, proteins, lipids, lipoxygenase 1 activity, peroxides, and pigment contents after harvest and after 20 months of storage at room temperature. Acidity was measured also after 30 months of storage. The values of water activity and humidity were 0.6-0.7 and 8.7-11.9%, respectively, and they did not change during storage time, but there was an increase in acidity, which alludes to lipase activity. The activity of lipoxygenase 1 was greatly affected. Immediately after harvest, the green pigments were represented mainly by pheophytin a, followed by pheophytin b, small quantities of chlorophyll b and chlorophyll a, and traces of other chlorophyll derivatives. After 20 months of storage almost all green pigments had disappeared. Drought stress probably enhanced membrane permeability, which led to a lower pH and promoted transformation of chlorophylls to pheophytins.
Resumo:
The objective of this study was to perform an analysis of the characterization of buriti fruit (Mauritia flexuosa). Each part of the fruit (peel, pulp, and fibrous part) was analyzed and their hygroscopic behavior was evaluated to establish the drying and storage conditions. Adsorption and desorption isotherms were obtained at 25 °C to the monolayer value was estimated, and the application of the Halsey, Handerson, Kuhn, Mizrahi, Oswin, Smith, BET, and GAB models was evaluated to the prediction of the isotherms. The fruit pulp was classified as rich in high quality oil, and like the peel and the fibrous part, it was also considered as rich in dietary fiber. The isotherms of the fruit parts were classified as type II, and their microbiological stability (a w < 0.6) can be maintained at 25 °C if the moisture content is lower than 8.5, 7.3, and 11.0 g H2O.100 g-1 of dry matter (d.m.), respectively. The hygroscopic behavior showed that in order to ensure stability, the fruit parts should be packaged with low water vapor permeability. The monolayer demonstrated that the peel, pulp, and the fibrous part cannot be dried under moisture content lower than 5.9, 5.0, and 6.4 g H2O.100 g-1 d.m., respectively. GAB was the most adequate model to describe their isotherms.
Resumo:
The purpose of this study was to evaluate changes in the structure and some functional properties of biofilms added with modified clays (Cloisite® 15A and Cloisite® 30B) prepared by the casting method. The analysis of the microstructure of the films, scanning electron microscopy (SEM), Optical microscopy (MO), and Infrared Spectroscopy (FTIR) indicated that the addition of clay in the films resulted in the formation of a heterogeneous microstructure, microcomposite or tactoid. Due to the formation of a microcomposite structure, functional properties of the films added with both clays such as opacity, solubility, and permeability to water vapor (PVA), were not better than those of the control film. Thus, it was concluded that although it is possible to produce a film added with modified clays using the casting method, it was not possible to obtain intercalation or exfoliation in a nanocomposite, which would result in improved functional properties.
Resumo:
The aim of this study was to evaluate the physical and chemical parameters of Williams pear, stored at 25 ºC for 15 days, with and without edible coating. Edible coatings prepared with alginate 2% and carrageenan 0.5% were tested. The analyses carried out on the samples were: weight loss, pH, soluble solids, firmness, and color. The edible coatings were characterized in terms of mechanical properties, permeability, thickness, and opacity. The results show that the application of edible coatings with carrageenan and alginate in pears influenced physical and chemical characteristics such as weight loss, pH, total soluble solids, color, and firmness of the fruit. However, the alginate coating showed the best results on pear conservation since it had lower water vapor permeability and greater tensile strength, and therefore it can be used as a protective film on these fruits.
Resumo:
In order to increase the shelf life and maintain the quality and stability of the biological compounds with antioxidant activity present in Castilla blackberry fruits, a sodium alginate-based edible crosslinked coating was applied, and the fruits were packed in two different plastic containers and stored under refrigeration (3 ± 1 °C). Total antioxidant capacity and its relationship to physicochemical variables such as pH, Brix, and acidity were evaluated in six treatments: uncoated blackberry stored in a macroperforated container (T1) and thermosealed container (T2), without crosslinked coating in a macroperforated container (T3) and thermosealed container (T4), with crosslinked coating (calcium ions) packed in macroperforated container (T5) and thermosealed container (T6). The results indicated that factors such as gas permeability in the coatings, the packaging used, and physicochemical parameters significantly affected the fruit total antioxidant capacity, with the highest level in T1 (0.22 µgEAA/ml) at the end of the essay, which is related to the lowest levels of pH and direct exposure to air. On the other hand, the lowest value was obtained in T6 (0.16 µgEAA/ml) due to the crosslinked coating, packaging in the thermosealed container, and higher pH value. Variations in acidity, Brix, and pH indicate the presence of degenerative processes in the crosslinked coating treatments, which limited the physicochemical changes.
Resumo:
The use of unconventional sources of K for plants has been widely studied, but the effects of alternative materials on physiological seed quality are still relatively unknown. The objective of this study was to evaluate the physiological quality of soybean and wheat seeds after using different potassium sources in a crop succession. The experimental design was a completely randomized block with four replications. Treatments consisted of three K sources (KCl, alkaline rock and ground phonolite, with 58%, 11% and 8.42% of K2O, respectively) applied in four doses (0, 25, 50 and 100 kg K2O ha-1). Potassium doses were applied in soybean and their residual effects were evaluated on the following wheat crop. Soybean and wheat seeds were evaluated immediately after harvesting by tests for moisture content, seed weight, germination, first count, electrical conductivity, seedling length and seedling dry matter. Soybean plants fertilized with alternative sources of K produced heavier seeds with a lower coat permeability compared to KCl; the physiological quality of soybean seeds and the weight of wheat seeds increase due to higher K2O doses, independently of their source.
Resumo:
Seed quality may be affected by several factors, including permeability, color, and lignin content in the seed coat. This study aimed at evaluating influence of lignin content in the tegument of seed samples of six different soybean cultivars, in which half of each sample was inoculated with the fungus Aspergillus flavus, on the physical and physiological quality, and on the seed health, during 180 days storage period, under cold chamber with controlled conditions of temperature and RH. For that, at each interval of 60 days, samples were removed, and the physiological quality of these seeds was assessed by means of moisture and lignin contents; and by tests of seed health, germination, and electrical conductivity. The moisture content of seeds remained constant during all storage period. In the seed health test, it was found that inoculation was efficient, once the minimum incidence of the fungus in the inoculated seeds was 85%. In the germination test, there was a trend of reduction on percentage germination with the increase in storage period. However, there was an increase on electrical conductivity of seeds assessed. It was concluded that there is no interference of the lignin content in the seed coat on the resistance to infection by the fungus Aspergillus flavus, even after seed storage for a period of 180 days.