103 resultados para reperfusion injury
Resumo:
The aim of this study was to investigate the effect of propofol pretreatment on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the role of the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathway in this procedure. Survival was determined 48 h after LPS injection. At 1 h after LPS challenge, the lung wet- to dry-weight ratio was examined, and concentrations of protein, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) were determined using the bicinchoninic acid method or ELISA. Lung injury was assayed via lung histological examination. PI3K and p-Akt expression levels in the lung tissue were determined by Western blotting. Propofol pretreatment prolonged survival, decreased the concentrations of protein, TNF-α, and IL-6 in BALF, attenuated ALI, and increased PI3K and p-Akt expression in the lung tissue of LPS-challenged rats, whereas treatment with wortmannin, a PI3K/Akt pathway specific inhibitor, blunted this effect. Our study indicates that propofol pretreatment attenuated LPS-induced ALI, partly by activation of the PI3K/Akt pathway.
Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats
Resumo:
The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI) model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12) and epilepsy (n=14). It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01). During the ischemia period, there was an increase in the QRS interval (P<0.05) and a reduction in the P wave and QT intervals (P<0.05 for both) in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01) was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode.
Resumo:
Recent studies have revealed that an intrinsic apoptotic signaling cascade is involved in vascular hyperpermeability and endothelial barrier dysfunction. Propofol (2,6-diisopropylphenol) has also been reported to inhibit apoptotic signaling by regulating mitochondrial permeability transition pore (mPTP) opening and caspase-3 activation. Here, we investigated whether propofol could alleviate burn serum-induced endothelial hyperpermeability through the inhibition of the intrinsic apoptotic signaling cascade. Rat lung microvascular endothelial cells (RLMVECs) were pretreated with propofol at various concentrations, followed by stimulation with burn serum, obtained from burn-injury rats. Monolayer permeability was determined by transendothelial electrical resistance. Mitochondrial release of cytochrome C was measured by ELISA. Bax and Bcl-2 expression and mitochondrial release of second mitochondrial-derived activator of caspases (smac) were detected by Western blotting. Caspase-3 activity was assessed by fluorometric assay; mitochondrial membrane potential (Δψm) was determined with JC-1 (a potential-sensitive fluorescent dye). Intracellular ATP content was assayed using a commercial kit, and reactive oxygen species (ROS) were measured by dichlorodihydrofluorescein diacetate (DCFH-DA). Burn serum significantly increased monolayer permeability (P<0.05), and this effect could be inhibited by propofol (P<0.05). Compared with a sham treatment group, intrinsic apoptotic signaling activation - indicated by Bax overexpression, Bcl-2 downregulation, Δψm reduction, decreased intracellular ATP level, increased cytosolic cytochrome C and smac, and caspase-3 activation - was observed in the vehicle group. Propofol not only attenuated these alterations (P<0.05 for all), but also significantly decreased burn-induced ROS production (P<0.05). Propofol attenuated burn-induced RLMVEC monolayer hyperpermeability by regulating the intrinsic apoptotic signaling pathway.
Resumo:
MicroRNAs (miRNAs) may be important mediators of the profound molecular and cellular changes that occur after traumatic brain injury (TBI). However, the changes and possible roles of miRNAs induced by voluntary exercise prior to TBI are still not known. In this report, the microarray method was used to demonstrate alterations in miRNA expression levels in the cerebral cortex of TBI mice that were pretrained on a running wheel (RW). Voluntary RW exercise prior to TBI: i) significantly decreased the mortality rate and improved the recovery of the righting reflex in TBI mice, and ii) differentially changed the levels of several miRNAs, upregulating some and downregulating others. Furthermore, we revealed global upregulation of miR-21, miR-92a, and miR-874 and downregulation of miR-138, let-7c, and miR-124 expression among the sham-non-runner, TBI-non-runner, and TBI-runner groups. Quantitative reverse transcription polymerase chain reaction data (RT-qPCR) indicated good consistency with the microarray results. Our microarray-based analysis of miRNA expression in mice cerebral cortex after TBI revealed that some miRNAs such as miR-21, miR-92a, miR-874, miR-138, let-7c, and miR-124 could be involved in the prevention and protection afforded by voluntary exercise in a TBI model.
Hydrogen sulfide in posthemorrhagic shock mesenteric lymph drainage alleviates kidney injury in rats
Resumo:
Posthemorrhagic shock mesenteric lymph (PHSML) is a key factor in multiple organ injury following hemorrhagic shock. We investigated the role of hydrogen sulfide (H2S) in PHSML drainage in alleviating acute kidney injury (AKI) by administering D,L-propargylglycine (PPG) and sodium hydrosulfide hydrate (NaHS) to 12 specific pathogen-free male Wistar rats with PHSML drainage. A hemorrhagic shock model was established in 4 experimental groups: shock, shock+drainage, shock+drainage+PPG (45 mg/kg, 0.5 h prehemorrhage), and shock+drainage+NaHS (28 µmol/kg, 0.5 h prehemorrhage). Fluid resuscitation was performed after 1 h of hypotension, and PHMSL was drained in the last three groups for 3 h after resuscitation. Renal function and histomorphology were assessed along with levels of H2S, cystathionine-γ-lyase (CSE), Toll-like receptor 4 (TLR4), interleukin (IL)-10, IL-12, and tumor necrosis factor (TNF)-α in renal tissue. Hemorrhagic shock induced AKI with increased urea and creatinine levels in plasma and higher H2S, CSE, TLR4, IL-10, IL-12, and TNF-α levels in renal tissue. PHSML drainage significantly reduced urea, creatinine, H2S, CSE, and TNF-α but not TLR4, IL-10, or IL-12. PPG decreased creatinine, H2S, IL-10, and TNF-α levels, but this effect was reversed by NaHS administration. In conclusion, PHSML drainage alleviated AKI following hemorrhagic shock by preventing increases in H2S and H2S-mediated inflammation.
Resumo:
Stroke is the third most common cause of death worldwide, and most stroke survivors present some functional impairment. We assessed the striatal oxidative balance and motor alterations resulting from stroke in a rat model to investigate the neuroprotective role of physical exercise. Forty male Wistar rats were assigned to 4 groups: a) control, b) ischemia, c) physical exercise, and d) physical exercise and ischemia. Physical exercise was conducted using a treadmill for 8 weeks. Ischemia-reperfusion surgery involved transient bilateral occlusion of the common carotid arteries for 30 min. Neuromotor performance (open-field and rotarod performance tests) and pain sensitivity were evaluated beginning at 24 h after the surgery. Rats were euthanized and the corpora striata was removed for assay of reactive oxygen species, lipoperoxidation activity, and antioxidant markers. Ischemia-reperfusion caused changes in motor activity. The ischemia-induced alterations observed in the open-field test were fully reversed, and those observed in the rotarod test were partially reversed, by physical exercise. Pain sensitivity was similar among all groups. Levels of reactive oxygen species and lipoperoxidation increased after ischemia; physical exercise decreased reactive oxygen species levels. None of the treatments altered the levels of antioxidant markers. In summary, ischemia-reperfusion resulted in motor impairment and altered striatal oxidative balance in this animal model, but those changes were moderated by physical exercise.
Resumo:
Lipopolysaccharide (LPS)-induced endotoxemia triggers the secretion of proinflammatory cytokines and can cause acute lung injury (ALI). The high mobility group box 1 (HMGB1) protein plays an important role as a late mediator of sepsis and ALI. Galantamine (GAL) is a central acetylcholinesterase inhibitor that inhibits the expression of HMGB1. This study evaluated the effects of GAL by measuring levels of inflammatory mediators and observing histopathological features associated with LPS-induced ALI. Sixty 8-10 week old male Sprague-Dawley rats (200-240 g) were randomized into three groups as follows: control group, LPS group (7.5 mg/kg LPS), and LPS+GAL group (5 mg/kg GAL before LPS administration). Histopathological examination of lung specimens obtained 12 h after LPS administration was performed to analyze changes in wet-to-dry (W/D) weight ratio, myeloperoxidase (MPO) activity, and HMGB1 expression level. Additionally, plasma concentrations of tumor necrosis factor-α, interleukin-6, and HMGB1 were measured using an enzyme-linked immunosorbent assay at 0 (baseline), 3, 6, 9, and 12 h after LPS administration. Mortality in the three groups was recorded at 72 h. LPS-induced ALI was characterized by distortion of pulmonary architecture and elevation of MPO activity, W/D weight ratio, and levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, and HMGB1. Pretreatment with GAL significantly reduced the LPS-induced lung pathological changes, W/D weight ratio, levels of pro-inflammatory cytokines and MPO activity (ANOVA). Moreover, GAL treatment significantly decreased the mortality rate (ANOVA). In conclusion, we demonstrated that GAL exerted a protective effect on LPS-induced ALI in rats.
Resumo:
Abstract Peripheral nerves have the unique capability to regenerate after injury. Insights into regeneration of peripheral nerves after injury may have implications for neurodegenerative diseases of the nervous system. We investigated the ability of polysaccharide from Hericium erinaceus mushroom in the treatment of nerve injury following peroneal nerve crush in Sprague-Dawley rats by daily oral administration. In sensory functional recovery test, the time taken for the rats to withdraw its hind limb from contact with the hot plate was measured. The test revealed acceleration of sensory recovery in the polysaccharide group compared to negative controls. Further, peripheral nerve injury leads to changes at the remotely located DRG containing cell bodies of sensory neurons. Immunofluorescence studies showed that Akt and p38 MAPK were expressed in DRG and strongly upregulated in polysaccharide group after peripheral nerve injury. The intensity of endothelial cells antigen-1 that recognized endothelial cells in the blood vessels of distal segments in crushed nerves was significantly higher in the treated groups than in the negative control group. Our findings suggest that H. erinaceus is capable of accelerating sensory functional recovery after peripheral nerve injury and the effect involves the activation of protein kinase signaling pathways and restoration of blood-nerve barrier.
Resumo:
A previously healthy 19 year-old male presented to the hospital with anorexia, nausea, and vomiting. Laboratory studies were significant for hypercalcemia (peak calcium value of 14.8 mg/dL) and acute kidney injury (peak serum creatinine of 2.88 mg/dL). He admitted to using a parenteral formulation of vitamins A, D and E restricted for veterinary use containing 20,000,000 IU of vitamin A; 5,000,000 IU of vitamin D3; and 6,800 IU of vitamin E per 100 mL vial. The patient stated to have used close to 300 mL of the product over the preceding year. Interestingly, the young man was not interested in the massive amounts of vitamins that the product contained; he was only after the local effects of the oily vehicle. The swelling produced by the injection resulted in a silicone-like effect, which gave the impression of bigger muscles. Nevertheless, the product was absorbed and caused hypervitaminosis. The serum level of 25(OH) vitamin D was clearly elevated at 150 ng/mL (reference range from 30 to 60 ng/mL), but in most published cases of vitamin D toxicity, serum levels have been well above 200 ng/mL. His PTH level was undetectable and other potential causes of hypercalcemia were excluded. Therefore, we posit that the severity of the hypercalcemia observed in this case was the result of a synergistic effect of vitamins A and D. The patient was treated with normal saline, furosemide and zolendronic acid, with rapid normalization of calcium levels and renal function.
Resumo:
INTRODUCTION: The decision of when to start dialysis in Acute Kidney Injury (AKI) patients with overt uremia is strongly established, however, when blood urea nitrogen (BUN) levels is < 100 mg/dL the timing of initiation of dialysis remains uncertain. Purpose: The aim of this study was to assess mortality and renal function recovery AKI patients started on dialysis at different BUN levels. METHODS: This was a retrospective study performed at Medical School Hospital, São Paulo, Brazil, enrolling 86 patients underwent to dialysis. RESULTS: Dialysis was started when BUN < 75 mg/dl in 23 patients (Group I) and BUN > 75 mg/dl in 63 patients (Group II). Hypervolemia and mortality were higher in Group I than in Group II (65.2% vs. 14.3% - p < 0.05, 39.1% vs. 68.9%- p < 0.05, respectively). Among survivors, the rate of renal function recovery was higher in Group I (71.4% and 36.8%, respectively - p < 0.05). Multivariate analysis showed that sepsis, age > 60 years, peritoneal dialysis and BUN > 75 mg/dl at dialysis initiation were independently related with mortality. CONCLUSIONS: Lower mortality and higher renal function recovery rates were associated with early dialysis initiated at lower BUN leves in AKI patients.
Resumo:
Introduction: Sepsis is a leading precipitant of Acute Kidney Injury (AKI) in intensive care unit (ICU) patients, and is associated with a high mortality rate. Objective: We aimed to evaluate the risk factors for dialysis and mortality in a cohort of AKI patients of predominantly septic etiology. Methods: Adult patients from an ICU for whom nephrology consultation was requested were included. End-stage chronic renal failure and kidney transplant patients were excluded. Results: 114 patients were followed. Most had sepsis (84%), AKIN stage 3 (69%) and oliguria (62%) at first consultation. Dialysis was performed in 66% and overall mortality was 70%. Median serum creatinine in survivors and non-survivors was 3.95 mg/dl (2.63 - 5.28) and 2.75 mg/dl (1.81 - 3.69), respectively. In the multivariable models, oliguria and serum urea were positively associated with dialysis; otherwise, a lower serum creatinine at first consultation was independently associated with higher mortality. Conclusion: In a cohort of septic AKI, oliguria and serum urea were the main indications for dialysis. We also described an inverse association between serum creatinine and mortality. Potential explanations for this finding include: delay in diagnosis, fluid overload with hemodilution of serum creatinine or poor nutritional status. This finding may also help to explain the low discriminative power of general severity scores - that assign higher risks to higher creatinine levels - in septic AKI patients.
Resumo:
This review will focus on long-term outcomes after acute kidney injury (AKI). Surviving AKI patients have a higher late mortality compared with those admitted without AKI. Recent studies have claimed that long-term mortality in patients after AKI varied from 15% to 74% and older age, presence of previous co-morbidities, and the incomplete recovery of renal function have been identified as risk factors for reduced survival. AKI is also associated with progression to chronic kidney (CKD) disease and the decline of renal function at hospital discharge and the number and severity of AKI episodes have been associated with progression to CKD. IN the most studies, recovery of renal function is defined as non-dependence on renal replacement therapy which is probably too simplistic and it is expected in 60-70% of survivors by 90 days. Further studies are needed to explore the long-term prognosis of AKI patients.
Resumo:
Abstract Introduction: Sepsis, an extremely prevalent condition in the intensive care unit, is usually associated with organ dysfunction, which can affect heart and kidney. Objective: To determine whether the cardiac dysfunction and the Troponin I forecast the occurrence of acute renal failure in sepsis. Methods: Cardiac dysfunction was assessed by echocardiography and by the serum troponin I levels, and renal impairment by AKIN criteria and the need of dialysis. Twenty-nine patients with incident sepsis without previous cardiac or renal dysfunction were enrolled. Results and Discussion: Patients averaged 75.3 ± 17.3 years old and 55% were male. Median APACHE II severity score at ICU admission was 16 (9.7 - 24.2) and mortality rate in 30 days was 45%. On the fifth day, 59% had ventricular dysfunction. Troponin serum levels on day 1 in the affected patients were 1.02 ± 0.6 ng/mL compared with 0.23 ± 0.18 ng/mL in patients without heart dysfunction (p = 0.01). Eighteen out of 29 patients (62%) underwent renal replacement therapy (RRT) and the percent of patients with ventricular dysfunction who required dialysis was higher (94% vs. 16%, p = 0.0001). Values of troponin at day 1 were used to develop a ROC curve to determine their ability to predict the need of dialysis. The area under the curve was 0.89 and the cutoff value was 0.4 ng/mL. Conclusion: We found that an elevation in serum troponin levels, while guarding a relationship with ventricular dysfunction, can be a precious tool to predict the need for dialysis in sepsis patients.