184 resultados para producción de café
Resumo:
La horticultura en Colombia comprende las áreas de floricultura, fruticultura, olerícultura, producción de plantas aromáticas y medicinales y la horticultura urbana. La promoción y desarrollo del sector frutícola representa para Colombia una importante fuente de crecimiento de la agricultura, de generación de empleo rural y de desarrollo con equidad para las distintas regiones puesto que las frutas pueden asentarse en los diversos pisos térmicos de que dispone el país, a la vez que conforma una producción administrada con criterios de eficiencia y sostenibilidad en escalas que van desde micro, pequeños y medianos productores hasta grandes productores y empresas. Durante las últimas cuatro décadas el área sembrada en frutas expresa una dinámica de constante crecimiento, consiguiendo así aumentar su participación tanto en el área dedicada a cultivos no transables, como en el total del área de la agricultura sin café. Así, mientras en 1970 la participación del área frutícola en los no transables era del 1,6%, en el 2005 ésta era del 12,6%. Las áreas plantadas en frutas en Colombia pasaron de 191.035 ha en 2003 a 225.325 ha en 2007 lo que representa un crecimiento de 17,9 %, mientras que los volúmenes de producción pasaron de 2.675.736 t a 3.279.264 t en el mismo período en 47 especies frutícolas. El Plan Frutícola Nacional - PFN, constituye una propuesta estratégica conformada por conjunto coherente de objetivos, estrategias y programas que, con base en una visión de futuro, buscan la meta inicial de duplicar el área de la producción frutícola nacional, asegurar las condiciones tecnológicas y de innovación para una producción sostenible y de calidad, agregar valor en la cadena frutícola, y lograr una vinculación plena en los mercados internacionales. Se busca que los participantes conozcan los principales desarrollos de la fruticultura Colombiana, sus retos y oportunidades para la próxima década.
Resumo:
The combination of high performance exclusion chromatography (HPEC) and gas chromatography (GC) was applied to the analysis of six coffee samples that were previously characterized by sensory tests as of good or poor quality. The data obtained by the two techniques were statistically evaluated by "Principal Components Analysis" (PCA) using selected peak areas. The results showed the potential of the described techniques for coffee analysis. The HPEC technique monitored with the U.V. detector at 272 nm and followed by PCA may be correlated with sensorial data, particularly if a wider group of samples is used.
Resumo:
A review of heterocyclic compounds in roasted coffee is presented. The contents, precursors and sensorial properties of furans, pyrroles, oxazoles, thiazoles, thiophenes, pyrazines and pyridines are discussed. The impact heterocyclic compounds of coffee aroma are described.
Resumo:
This review is about the aliphatic, alicyclic and aromatic compounds (non-heterocyclic compounds) that are present in the volatile fractions of roasted coffees. Herein, the contents, aroma precursors and the sensorial properties of volatile phenols, aldehydes, ketones, alcohols, ethers, hydrocarbons, carboxylic acids, anhydrides, esters, lactones, amines and sulphur compounds are discussed. Special attention is given to the compounds of these groups that are actually important to the final aroma of roasted coffees.
Resumo:
Coffee is a product consumed all around the world, Brazil being the biggest exporter. However, little is known about the difference in composition of the different brands in terms of bioactive substances. In the present study, ten of the most consumed brands of coffee in Rio de Janeiro were analyzed. Caffeine contents, trigonelline and total chlorogenic acid varied from 0.8 g/100g to 1.4 g/100g; 0.2 g/100g to 0.5 g/100g and from 3.5 g kg-1 to 15.9 g kg-1, respectively. The large heterogeneity observed in the amounts of the bioactive compounds can be attributed to different formulations of the various brands, as well as to different roasting conditions.
Resumo:
A reverse phase liquid chromatography method was developed for simultaneous determination of trigonelline, caffeine, nicotinic and chlorogenic (5-CQA) acids in roasted coffee. A gradient of acetic acid/acetonitrile was used as mobile phase and detection was carried out in the UV. The samples were extracted with acetonitrile/water (5:95 v/v) at 80 ºC/10 min. Good recovery (89 to 104%), repeatability and linearity were obtained. Detection limits of 0.01, 0.15, 0.04 and 0.04 mg mL-1 were observed for nicotinic acid, trigonelline, 5-CQA and caffeine. The method, applied to arabica and robusta coffees with different degrees of roasting, was efficient and fast (~35 min) and also allowed identification of cinnamic acids.
Resumo:
In this work a fast method for the determination of the total sugar levels in samples of raw coffee was developed using the near infrared spectroscopy technique and multivariate regression. The sugar levels were initially obtained using gravimety as the reference method. Later on, the regression models were built from the near infrared spectra of the coffee samples. The original spectra were pre-treated according to the Kubelka-Munk transformation and multiplicative signal correction. The proposed analytical method made possible the direct determination of the total sugar levels in the samples with an error lower by 8% with respect to the conventional methodology.
Resumo:
The aim of this work is to evaluate the influence of processing (semi-dry and dry) and roasting (light, medium and dark) on the antioxidant activity of coffee brews, using tests to determine the reducing power and the DPPH scavenging, Fe+2 chelating and lipid peroxidation inhibition activities. All of the coffee brews presented concentration-dependent antioxidant activity. The light coffee samples presented the higher reducing power and DPPH scavenging activity. Its ion chelating capacity was similar to the medium samples, but was less than the green coffee chelating capacity. The semi-dry processing was more efficient than the dry processing only for the reducing power. All of the samples presented high lipid peroxidation inhibition activity. Based on the results the degree of coffee roasting seems to be more important than the processing to determine the antioxidant activity of brews.
Resumo:
Gas chromatography coupled with mass spectrometry (GC-MS) is widely used for the characterization of volatile compounds. However, due to the complexity of the soluble coffee matrix, a complete identification of the components should not be based on mass spectra interpretation only. The linear index of retention (LRI) is frequently used to give support to mass spectra. The aim of this work is to investigate the characterization of the volatile compounds in soluble coffee samples by GC-MS using LRI values found with a HP-INNOWAX column. The method used allows a significant increase of the reliability of identifying compounds.
Resumo:
Coffee fruit processing is one of the most polluting activities in agriculture due to the large amount of waste generated in the process. In this work, coffee parchment was employed as precursor for the production of carbons activated with ZnCl2 (CAP). The material was characterized using N2 adsorption/desorption at 77 K, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The material showed a surface area of 521.6 m²g-1 and microporous structure. CAP was applied as adsorbent for the removal of methylene blue dye in aqueous medium. The adsorption capacity was found to be about 188.7 mg g-1.
Resumo:
Ferric chloride as a new activating agent was used to obtain activated carbons from agroindustrial waste. This material was prepared at three temperatures of pyrolysis, 200, 280 and 400 ºC. The carbonaceous materials obtained after the activation processes showed high specific surface areas (BET), with values higher than 900 m² g-1. The materials showed different behaviors in the adsorption of methylene blue dye and reactive red textile dye in water solutions. An important fact in the use of FeCl3 as an activating agent is that the activation temperature is at 280 ºC, well below of those commonly employed in chemical or physical activations described in the literature.
Resumo:
Materials based on pure iron oxide and impregnated with niobia (Nb2O5) were prepared. Their catalytic activities were tested on the oxidation of compounds present in the wastewater from the processing of coffee berries. Particularly caffeine and catechol were tested. The oxidation reactions were carried out with the following systems (i) UV/H2O2, (ii) photo-Fenton and (iii) heterogeneous Fenton. All materials were characterized with X-ray diffraction, Mössbauer and infrared spectroscopy. Iron was mainly in the forms of goethite and maghemite. The oxidation kinetics were monitored by UV-vis and the oxidation products were monitored by mass spectrometry. The photo-Fenton reaction presented highest oxidation efficiency, removing 98% of all caffeine and catechol contents.
Resumo:
About 20% of Brazilian raw coffee production is considered inappropriate for exportation. Consequently, these beans are incorporated to good quality beans in the Brazilian market. This by-product of coffee industry is called PVA due to the presence of black (P), green (V) and sour (A) defective beans which are known to contribute considerably for cup quality decrease. Data on the volatile composition of Brazilian defective coffee beans are scarce. In this study, we evaluated the volatile composition of immature, black-immature, black defective beans and PVA compared to good quality beans. Potential defective beans markers were identified.
Resumo:
The bioactive compounds and antioxidant activity presented by Conilon coffee (C. Canephora) variety, produced in the Espírito Santo State, Brazil, were quantified. The light roast coffee showed the highest level of total phenols, trigonelline, caffeic and chlorogenic acids. The proanthocyanidin level was the highest for dark roast coffee, while caffeine level didn't show significative changes for the light and middle roast coffees. All the Conilon coffee extracts showed antioxidant activity depending on bioactive compounds concentration and roasting degree. The coffee samples submitted to a light roasting degree showed the highest antioxidant activity.
Resumo:
The black, green and sour coffee defect (PVA) contributes with 20% of the total coffee production. It should be separate from the normal coffee grains in order to improve the final quality of the beverage. In this way, the present work has the objective to use the PVA reject for the production of activated carbon. The activated carbon (CA) was prepared from PVA defect using zinc chloride as activating agent. The prepared material (CA PVA) was characterized and the adsorption tests were carried out using as organic models methylene blue (AM) and reactive red (VR). The CA PVA revealed to be more efficient in the removal of the organic contaminants compared to a commercial activated carbon.