312 resultados para oxicloreto de cobre
Resumo:
Samples of copper compounds covering all of the XXth century and the end of the XIXth century were submitted to classical and instrumental quantitative analysis. The amount of impurities greatly decreased with time, reaching a constant level since the 1960's. The gravimetric method was suitable for the determination of copper although other procedures also gave good or reasonable results. However, for metal contaminants, atomic absorption spectrometry was the best choice because of its lower detection limits, being able to determine several elements in the oldest samples. Ion chromatography detected several anions in copper salts manufactured before the 1950's. An increasing quality of raw materials and a better sensitivity of analytical methods led to quality improvement of copper compounds with time.
Resumo:
The efficiency of a new procedure for the digestion of natural waters, based on a microwave-activated photochemical reactor was evaluated in this work. Fluorescence spectra showed a 99% reduction in the emission of a 40 mg L-1 humic acid solution after 15 min of UV irradiation. In the presence of H2O2, only 3 min were necessary to accomplish a reduction of almost 100% in the emission and 6 min to reduce the concentration of dissolved organic carbon by 95%. The copper recovery from synthetic samples containing commercial humic acid, from soil suspensions, as well as from natural waters varied between 91.5 and 106.6%. The digestion of dissolved and unfiltered samples was successfully accomplished in 6 and 12 min, respectively. No contaminations or sample losses were observed. Results of copper speciation in natural waters showed that this metal is predominantly bound to natural ligands. Only 3-6% of the total recoverable copper is present in the labile form.
Resumo:
The alpha-zirconium (IV) hydrogenphosphate (alpha-ZrP) has received great attention in the last years due to its properties like ion exchange, intercalation, ionic conductivity and catalytic activity. This work reports a method to produce metallic copper clusters on alpha-ZrP to be used as catalysts in petrochemical processes. It was found that the solids were non-crystalline regardless of the uptake of copper and the reduction. The specific surface area increased as a consequence of the increase of the interlayer distance to accept the copper ions between the layers. During the reduction, big clusters of copper (0,5-11µ) with different sizes and shapes were produced.
Resumo:
Copper content is of great concern among sugarcane-spirit producers. It is released from copper-made distillers, during the distillation process. Activated carbon has been used to remove copper. However, depending on the amount of carbon and the duration of reaction, it can also remove higher alcohols and esters, which are important in the final product. A sugarcane spirit with 9 mg L-1 of copper was shaken with 2 to 26 g L-1 of activated carbon, during 10 to 1440 minutes. Then, copper and organic compounds were measured. At least 12 g L-1 of carbon and 60 min shaking time were necessary to decrease copper bellow 5 mg L-1. However, other components of the product were also affected.
Resumo:
In the present work three ferroin reagents were studied for the simultaneous spectrophotometric determination of iron and copper: 1,10-phenanthroline, 2,2'-bipyridine and 2,4,6-tri(2-pyridyl)-1,3,5-triazine. Effect of pH, conditions, order reagent addition, interferences, amount of reagents, lineal range, sensitivity and stability of each system were compared. The 2,4,6-tri(2-pyridyl)-1,3,5-triazine can be used for determination of iron in the presence of copper with a detection limit of 5 µg L-1 and coefficient of variation of 2.0%; However it was not possible to determine directly copper in the presence of iron with this reagent. 1,10-phenanthroline can be used for simultaneous determination of the metallic ions with detection limits of 7 and 8 mg L-1 and coefficients of variation of 1.8 and 2.3% in the determination of iron and copper, respectively. The results showed also that 2,2'-bipyridine can be used for simultaneous determination of the metallic ions with detection limits of 11 and 32 µg L-1 and coefficients of variation of 1.9 and 2.5% in the determination of iron and copper, respectively. The reagents were used for spectrophotometric determination of iron and copper in ethanol fuel.
Resumo:
In this work a simple and versatile procedure is described for treating water samples using small polypropylene (PP) vials (4 mL) for determining heavy metals by square wave voltammetry (SWV). This procedure involves treatment with nitric acid (0.2 mol L-1) and boiling in a water-bath (~ 100 ºC). This process is completed after one hour and allows the pretreatment of several samples simultaneously. The accuracy was estimated using addition/recovery studies and certified water sample analysis, yielding an agreement near to 100%.
Resumo:
The objective of this work was to investigate if producers of sugar cane spirits in Minas Gerais, Brazil, have improved the copper content of their products and also if they have adjusted to the new standards of identity for 'cachaça' and 'aguardente'. Seventy-one samples, obtained from May 2003 until March 2004, were analyzed. Mean copper content was 2.30 mg/L, which indicates a significant reduction in levels. The mean alcohol content was 45.6 % v/v. All of the 'aguardente' but only 79% of the 'cachaça' attended to the standard of identity for alcohol content for these products.
Resumo:
Iron, copper and lead distribution was evaluated in sediment cores from a disturbed mangrove area in Guanabara Bay: a core from a seaward site where mangrove vegetation was removed ~20 yr before sampling (MD); a core from an intermediate site with dead vegetation, apparently due to insect attack (MP), and a core from a landward site with living vegetation (MV). Metal concentrations showed increasing values seaward while organic matter content showed an inverse trend, displaying a negative correlation with metals. This unusual correlation indicates opposite sources, since metals come from the bay and the main OM origin is probably degraded mangrove vegetation. Plant cover loss seems to be a critical factor affecting metal accumulation, particularly due to changes in OM input.
Resumo:
Copper selenide (berzelianite) films were prepared on the title substrates using the chemical bath deposition technique (CBD). Film composition was determined by energy dispersion of x-rays. The kinetics of film growth is parabolic and film adherence limits the film thickness. On titanium, copper selenide forms islands that do not completely cover the surface, unless the substrate is prepared with a tin oxide layer; film composition also depends on the titanium oxide layer. On vitreous carbon, CBD and mechanical immobilization techniques lead to films with similar resistances for the electron transfer across the film/substrate interface. On gold, composition studies revealed that film composition is always the same if the pH is in the range from 8 to 12, in contrast to films prepared by an ion-ion combination route. On copper, a new procedure for obtaining copper selenide films as thick as 5 µm has been developed.
Resumo:
Copper speciation and behavior in different rivers located in the city of Curitiba were evaluated in this work. Sampling locations were selected to cover different levels of urbanization regarding their anthropogenic occupation and land use. Results showed that in highly-developed areas, both organic matter and dissolved sulfides were able to control copper speciation. Dissolved sulfide species were the major complexing agent in areas where dissolved oxygen levels are low. Finally, it was demonstrated that in urban areas anthropogenic factors such as sewage inputs and occupation of the drainage basin are the key aspects controlling copper dynamics and speciation in river waters.
Resumo:
The activity of copper-doped hematite in the SCR with propane, in the presence of oxygen, was evaluated in this work. It was found that copper sulfate led to the production of solids with different specific surface areas depending on the amount of copper. The sulfur and copper species were mainly located on the surface. The copper-containing catalysts were more active in the reduction of nitrogen oxides and less active in the propane oxidation as compared to pure hematite. This behavior was assigned to an association of both sulfur and copper species to produce new sites active for NO reduction.
Resumo:
The adsorption of Cu(II) ions from aqueous solution by chitosan using a column in a closed hydrodynamic flow system is described. The adsorption capacities as a function of contact time of copper(II) ions and chitosan were determined by varying the ionic strength, temperature and the flow of the metal solution. The Langmuir model reproduced the adsorption isothermal data better than the Freundlich model. The experimental kinetic data correlate properly with the second-order kinetic reaction for the whole set of experimental adsorption conditions. The rate constants exercise great influence on the time taken for equilibrium to be established by complexation or electrostatic interaction between the amino groups of chitosan and the metal.
Resumo:
We report a structural study on polycrystalline La0.86Sr0.14Mn1-y Cu yO3+delta samples (y = 0, 0.05, 0.10, 0.15, 0.20) using refinement of powder X-ray diffraction data and analysis of scanning electron microscopy images. It is found that the structure remains rhombohedral through the whole series, with a decrease in the average Mn-Mn bond distances, slight variations in Mn-O-Mn angle and reduction in the unit cell volume with increasing Cu amounts. The values of Mn-Mn distances suggest compact structures with d within ±1%. Scanning electron microscopy images reveal homogeneous microstructure in all samples, besides a trend for smaller grains and larger porosity with increasing Cu content.
Resumo:
The aim of this work was to investigate the copper electrode behavior in the voltammetric determination of glyphosate. The best conditions for this determination are phosphate buffer 0.05 mol L-1 and pH 7.3, and the peak potential is observed at 187 mV. LD and LQ values are 59 µg L-1 e 196 µg L-1, respectively. A water sample was analysed for glyphosate and identical results were obtained by using the analytical curve and the standard addition method. The comparison with a voltammetric method with Hg electrode, after a reaction with nitrite, showed quite concordant results for the analysis of the surface water sample. Therefore, the proposed method can be applied to direct determinations of the herbicide in waters, decreasing the time of analysis; besides, the method is in agreement with the "green chemistry" concept.
Resumo:
A method for determining copper by solid phase spectrophotometry (SPS) was optimized using the Doehlert design. Copper(II) was sorbed on a styrene-divinylbenzene anion-exchange resin as a Cu(II)-1-(2-pyridylazo)-2-naphthol (PAN) complex, at pH 7.0. Resin phase absorbances at 560 and 800 nm were measured directly. The detection limit was found to be 2.5 µg L-1. The relative standard deviation on ten replicate determinations of 10 µg Cu(II) in 1000 mL samples was 1.1%. The linear range of the determination was 5.0-100 µg L-1. The method was applied successfully to the determination of Cu(II) in natural water and vegetable samples.