122 resultados para mercury remediation
Resumo:
Behavior of mercury in soil profiles with archaeological black earth (ABE) and surroundings area (SA) from Sítio Ilha de Terra, Caxiuanã, can provide information on anthropogenic activity of the Amazonian habitat. The samples of ABE and SA soil profiles were submitted to mineralogical chemical (total and sequential) analysis. The data show that the Hg occurs mainly in goethite and kaolinite in the two soil profiles. The highest concentrations of Hg and Fe are observed in the SA profile. These results indicate that the prehistoric human occupation contributed to the decrease of the concentration of Hg in soil ABE from Caxiuanã.
Resumo:
Mercury is a toxic metal used in a variety of substances over the course history. One of its more dubious uses is in dental amalgam restorations. It is possible to measure very small concentrations of this metal in the urine of exposed subjects by the cold vapor atomic absorption technique. The present work features the validation as an essential tool to confirm the suitability of the analytical method chosen to accomplish such determination. An initial analysis will be carried out in order to evaluate the environmental and occupational levels of exposure to mercury in 39 members of the auxiliary dental staff at public consulting rooms in the city of Araguaína (TO).
Resumo:
The reaction of 4-(phenyl)thiosemicarbazide with isatin yielded a new ligand, isatin-3-(N4-benzylthiosemicarbazone). Isatin-3-(N4-benzylthiosemicarbazone) deprotonated in ethanol/KOH reacts with an ethanolic solution of Hg(NO3)2 to give a mercury complex. The compounds were characterized by IR and X-ray single crystal structure determination. The X-ray studies revealed that the complex possesses a tetrahedral geometry with two deprotonated thiosemicarbazone ligands coordenated. The ligand and its mercury complex crystallize in the monoclinic (P2(1)/c) and triclinic (P-1) crystal system, respectively.
Resumo:
Land reclamation fills in the city of Rio Grande (RS) are polluted by mercury with concentrations ranging from 0.3 to 18.7 mg kg-1. The level of Hg pollution decreases from the oldest landfills of 18th century to recent ones. Mercury distribution along vertical profiles resembles the same for copper, lead, and zinc, what allow supposing that mercury distribution has an autochthonous character. It is suggested that the principal source of mercury pollution was the activities related to animal skin and fair hair treatment, using ancient technology known as "carroting". Similar scenario of environmental risk could be met in other Brazilian cities with similar colonization history.
Resumo:
In this review is presented an innovative technology for use of animal and vegetable waste with high pollution levels in microbial fuel cell (MFC) as an alternative to waste remediation and simultaneously producing electricity and fertilizer for agriculture. A brief history of MFC, the studies about the electron transfer mechanisms, discussion of the biological nanowires in bacteria and the use of chemical mediators or carriers of electrons are explained. The factors influencing the performance of MFCs, the application in waste and sewage treatment and power generation are also discussed.
Resumo:
An UV-Ozone reactor was developed with an ignition tube extracted into HID mercury lamp used to irradiation on zinc oxide (ZnO) and fluorinated tin oxide (FTO) films for PLEDs devices. Different exposures times were used. In contact angle measurements revealed better results for ZnO and FTO by 15 and 5 min, respectively. In Diffuse Reflectance Infra-red Fourier Transformed (DRIFT) spectroscopy allowed the observation of water, hydrocarbon and carbon dioxide adsorbed on the untreated TCO surfaces. After the UV-Ozone treatment the contaminants were significantly reduced or eliminated and the PLEDs devices decreased threshold voltages in comparison with respectively untreated TCOs.
Resumo:
Mercury (Hg) occurs in the environment as a natural and anthropogenic element, and through the years the accumulation of mercury has affected the integrity of ecosystems and human health. This study presents a screening of microorganisms resistant to organic and inorganic mercury, the determination of the minimum inhibitory concentration of Hg, the estimation of the mercury volatilization by selected microorganisms and the dynamics of volatilization. Eight Gram-negative bacteria resistant to high concentrations of mercury (60 to 210 mg L-1) were selected, and these isolates showed ability to volatilize the metal. The dynamics of the volatilization of the Proteus mirabilis M50C demonstrated that in only 4 h of incubation it was possible to volatilize 72% of the mercury present in the culture. The results showed promising application for bioremediation strategies.
Resumo:
This review reports the use of solid amalgam electrodes in the electroanalytical determination of organic and inorganic compounds. The different types of amalgam electrodes are presented, and attention is paid to solid amalgam electrode, and here is presented details about the pre-treatment for activation and renovation and also possible modifications in its surface. The wide potential range, higher signal-to-noise ratio, mechanical stability enabling their application in flowing systems, and principally their resistance toward passivation, indicate that the solid amalgam electrodes are environmentally friendly alternatives to mercury electrodes, without loss in the sensitivity and reproducibility in voltammetric responses.
Resumo:
Over 50 years, several scientists and industries have developed new alternatives for wastewater treatment and remediation. Recently, electrochemical technology has been largely developed mainly because of its versatility and environmental compatibility. Scientific contributions about role of the electrode material have allowed determining that the influence of material in the selectivity is an important parameter. However, to interpret this behavior, comprehensive physical chemistry models for organics destruction, related to electrochemical phenomena and material surfaces, were proposed in the last decades. So, this paper presents a critical and comprehensive review about the principles and recent mechanism advances in electrocatalysis for wastewater treatment.
Resumo:
The region of Aracá River (Middle and Upper Rio Negro-AM) has peculiar characteristics, having soils with atypical profile and high organic matter contents in great deep. The levels of aluminum and iron in the soil samples increased as a function of depth and concentrations of mercury ranged from 0.097 to 0.964 µg g-1. Statistical analysis showed the degree of similarity between soil samples collected. The highest concentrations of mercury in soil samples are directly related to soil higher content of organic matter, directly influencing the fate and bioavailability of mercury species to the environment.
Resumo:
Microcapsules containing lactoferrin were produced by spray drying using dextrin:octenylsuccinate starch, as wall materials. Porosity characteristics of spray-dried microcapsules were investigated by mercury intrusion porosimetry and nitrogen adsorption. The outer and inner structures of microcapsules were studied by Scanning Electron Microscopy and sizes were determined by Laser Diffraction. Results indicate that all microcapsules presents adsorption isotherm of type II and that micropores on the microcapsules surface will be very few or none. Our results show that microstructure, surface area and size of microcapsules are affected by dextrin: octenylsuccinate starch proportion. Pore characteristics for various microcapsules are found to be different.
Resumo:
A simple and sensitive method has been proposed for the determination of sibutramine-HCl in energy drinks, green tea and pharmaceutical formulations using differential pulse voltammetry performed on a hanging mercury drop electrode. In the chosen experimental condition (Mcllvaine pH 4.0 buffer, 50 mV pulse amplitude and 40 mV s-1 scan velocity), sibutramine-HCl presented a reversible behavior and a peak maximum at -80 mV. Detection limit was 0.4 mg L-1 and the working linear range extended up to 33.3 mg L-1 (r = 0.99). Analysis of real and fortified samples enabled recoveries between 91 and 102%. The electroanalytical method was compared with a HPLC method which indicated it accuracy.
Resumo:
The Direct Black 22 dye was electrooxidized at 30 mA cm-2 in a flow cell using a BDD or β-PbO2 anode, varying pH (3, 7, 11), temperature (10, 25, 45 °C), and [NaCl] (0 or 1.5 g L-1). In the presence of NaCl, decolorization rates were similar for all conditions investigated, but much higher than predicted through a theoretical model assuming mass-transport control; similar behavior was observed for COD removal (at pH 7, 25 °C), independently of the anode. With no NaCl, COD removals were also higher than predicted with a theoretical model, which suggests the existence of distinct dye degradation pathways.
Resumo:
Mercury distribution and fractionation were determined in sediments from the Paraíba do Sul River – RJ, Brazil. Total mercury concentration ranged from 1 to 158 ng g-1. Hg associated with the weakly bound fraction was dominant in the estuarine areas (main - 60% and secondary - 55%); followed by fluvial end member (48%) and mangrove (18%). These results reinforce the mercury availability to fluvial and estuarine areas and emphasize the key role played by mangroves as an efficient biogeochemical barrier. In conclusion, the continuous reduction of the mangrove ecosystem around the world can exacerbate the damage resulting from the mercury accumulation.
Resumo:
Knowing the mercury levels of an environment allows a diverse array of biogeochemical studies into the mercury cycle on a local or global scale. Among matrices commonly evaluated, water remains a challenge for research because its mercury levels can be very low, requiring development of complex analytical protocols. Currently, sample preservation methods, protocols that avoid contamination, and analytical techniques with low detection limits allow analysis of mercury in pristine waters. However, different protocols suggest different methods depending on a range of factors such as the characteristics of water sampled and storage time. In remote areas, such as oceanic and Amazonian regions, sample preservation and transport to a laboratory can be difficult, requiring processing of the water during the sampling expedition and the establishment of a field laboratory. Brazilian research on mercury in water can be limited due to difficulty obtaining reagents, lack of laboratory structure, qualified personnel, and financial support. Considering this complexity for analyzing water, we reviewed methodologies for sampling, preservation, and storage of water samples for analysis of the most commonly evaluated mercury species (dissolved gaseous mercury, reactive mercury, methylmercury and total mercury).