105 resultados para magnetic marker
Resumo:
In the present experimental study we assessed induced osteoarthritis data in rabbits, compared three diagnostic methods, i.e., radiography (XR), computed tomography (CT) and magnetic resonance imaging (MRI), and correlated the imaging findings with those obtained by macroscopic evaluation. Ten young female rabbits of the Norfolk breed were used. Seven rabbits had the right knee immobilized in extension for a period of 12 weeks (immobilized group), and three others did not have a limb immobilized and were maintained under the same conditions (control group). Alterations observed by XR, CT and MRI after the period of immobilization were osteophytes, osteochondral lesions, increase and decrease of joint space, all of them present both in the immobilized and non-immobilized contralateral limbs. However, a significantly higher score was obtained for the immobilized limbs (XT: P = 0.016, CT: P = 0.031, MRI: P = 0.0156). All imaging methods were able to detect osteoarthritis changes after the 12 weeks of immobilization. Macroscopic evaluation identified increased thickening of joint capsule, proliferative and connective tissue in the femoropatellar joint, and irregularities of articular cartilage, especially in immobilized knees. The differences among XR, CT and MRI were not statistically significant for the immobilized knees. However, MRI using a 0.5 Tesla scanner was statistically different from CT and XR for the non-immobilized contralateral knees. We conclude that the three methods detected osteoarthritis lesions in rabbit knees, but MRI was less sensitive than XR and CT in detecting lesions compatible with initial osteoarthritis. Since none of the techniques revealed all the lesions, it is important to use all methods to establish an accurate diagnosis.
Resumo:
The relevance of the relationship between cardiac disease and depressive symptoms is well established. White matter hyperintensity, a bright signal area in the brain on T2-weighted magnetic resonance imaging scans, has been separately associated with cardiovascular risk factors, cardiac disease and late-life depression. However, no study has directly investigated the association between heart failure, major depressive symptoms and the presence of hyperintensities. Using a visual assessment scale, we have investigated the frequency and severity of white matter hyperintensities identified by magnetic resonance imaging in eight patients with late-life depression and heart failure, ten patients with heart failure without depression, and fourteen healthy elderly volunteers. Since the frontal lobe has been the proposed site for the preferential location of white matter hyperintensities in patients with late-life depression, we focused our investigation specifically on this brain region. Although there were no significant group differences in white matter hyperintensities in the frontal region, a significant direct correlation emerged between the severity of frontal periventricular white matter hyperintensity and scores on the Hamilton scale for depression in the group with heart failure and depression (P = 0.016, controlled for the confounding influence of age). There were no significant findings in any other areas of the brain. This pattern of results adds support to a relationship between cardiovascular risk factors and depressive symptoms, and provides preliminary evidence that the presence of white matter hyperintensities specifically in frontal regions may contribute to the severity of depressive symptoms in cardiac disease.
Resumo:
The aim of the present study was to evaluate the role of magnetic resonance imaging (MRI) for the non-invasive detection of coronary abnormalities and specifically the remodeling process in patients with coronary artery disease (CAD). MRI was performed in 10 control healthy subjects and 26 patients with angiographically proven CAD of the right coronary (RCA) or left anterior descending (LAD) artery; 23 patients were within two months of acute coronary syndromes, and 3 had stable angina with a positive test for ischemia. Wall thickness (WT), vessel wall area (VWA), total vessel area (TVA), and luminal area (LA) were measured. There were significant increases in WT (mean ± SEM, RCA: 2.62 ± 0.75 vs 0.53 ± 0.15 mm; LAD: 2.21 ± 0.69 vs 0.62 ± 0.24 mm) and in VWA (RCA: 30.96 ± 17.57 vs 2.1 ± 1.2 mm²; LAD: 19.53 ± 7.25 vs 3.6 ± 2.0 mm²) patients compared to controls (P < 0.001 for each variable). TVA values were also greater in patients compared to controls (RCA: 44.56 ± 21.87 vs 12.3 ± 4.2 mm²; LAD: 31.89 ± 11.31 vs 17.0 ± 6.2 mm²; P < 0.001). In contrast, the LA did not differ between patients and controls for RCA or LAD. When the LA was adjusted for vessel size using the LA/TVA ratio, a significant difference was found: 0.33 ± 0.16 in patients vs 0.82 ± 0.09 in controls (RCA) and 0.38 ± 0.13 vs 0.78 ± 0.06 (LAD) (P < 0.001). As opposed to normal controls, positive remodeling was present in all patients with CAD, as indicated by larger VWA. We conclude that MRI detected vessel wall abnormalities and was an effective tool for the noninvasive evaluation of the atherosclerotic process and coronary vessel wall modifications, including positive remodeling that frequently occurs in patients with acute coronary syndromes.
Resumo:
COSY proton nuclear magnetic resonance was used to measure the exchange rates of amide protons of hen egg white lysozyme (HEWL) in the pressure-assisted cold-denatured state and in the heat-denatured state. After dissolving lysozyme in deuterium oxide buffer, labile protons exchange for deuterons in such a way that exposed protons are substituted rapidly, whereas "protected" protons within structured parts of the protein are substituted slowly. The exchange rates k obs were determined for HEWL under heat treatment (80ºC) and under high pressure conditions at low temperature (3.75 kbar, -13ºC). Moreover, the influence of co-solvents (sorbitol, urea) on the exchange rate was examined under pressure-assisted cold denaturation conditions, and the corresponding protection factors, P, were determined. The exchange kinetics upon heat treatment was found to be a two-step process with initial slow exchange followed by a fast one, showing residual protection in the slow-exchange state and P-factors in the random-coil-like range for the final temperature-denatured state. Addition of sorbitol (500 mM) led to an increase of P-factors for the pressure-assisted cold denatured state, but not for the heat-denatured state. The presence of 2 M urea resulted in a drastic decrease of the P-factors of the pressure-assisted cold denatured state. For both types of co-solvents, the effect they exert appears to be cooperative, i.e., no particular regions within the protein can be identified with significantly diverse changes of P-factors.
Resumo:
Constrictive pericarditis (CP) and restrictive cardiomyopathy share many similarities in both their clinical and hemodynamic characteristics and N-terminal prohormone brain natriuretic peptide (NT-proBNP) is a sensitive marker of cardiac diastolic dysfunction. The objectives of the present study were to determine whether serum NT-proBNP was high in patients with endomyocardial fibrosis (EMF) and CP, and to investigate how this relates to diastolic dysfunction. Thirty-three patients were divided into two groups: CP (16 patients) and EMF (17 patients). The control group consisted of 30 healthy individuals. Patients were evaluated by bidimensional echocardiography, with restriction syndrome evaluated by pulsed Doppler of the mitral flow and serum NT-proBNP measured by immunoassay and detected by electrochemiluminescence. Spearman correlation coefficient was used to analyze the association between log NT-proBNP and echocardiographic parameters. Log NT-proBNP was significantly higher (P < 0.05) in CP patients (log mean: 2.67 pg/mL; 95%CI: 2.43-2.92 log pg/mL) and in EMF patients (log mean: 2.91 pg/mL; 95%CI: 2.70-3.12 log pg/mL) compared with the control group (log mean: 1.45; 95%CI: 1.32-1.60 log pg/mL). There were no statistical differences between EMF and CP patients (P = 0.689) in terms of NT-proBNP. The NT-proBNP log tended to correlate with peak velocity of the E wave (r = 0.439; P = 0.060, but not with A wave (r = -0.399; P = 0.112). Serum NT-proBNP concentration can be used as a marker to detect the presence of diastolic dysfunction in patients with restrictive syndrome; however, serum NT-proBNP levels cannot be used to differentiate restrictive cardiomyopathy from CP.
Resumo:
The aim of the present study was to determine whether specific subgroups of schizophrenic patients, grouped according to electrodermal characteristics, show differences in the N-acetylaspartate/creatine plus choline (NAA / (Cr + Cho)) ratios in the frontal, cingulate and perirolandic cortices. Skin conductance levels (SCL) and skin conductance responses to auditory stimulation were measured in 38 patients with schizophrenia and in the same number of matched healthy volunteers (control). All subjects were submitted to multivoxel proton magnetic resonance spectroscopic imaging. When compared to the control group, patients presented significantly lower NAA / (Cr + Cho) ratios in the right dorsolateral prefrontal cortex (schizophrenia = 0.95 ± 0.03; control = 1.12 ± 0.04) and in the right (schizophrenia = 0.88 ± 0.02; control = 0.94 ± 0.03) and left (schizophrenia = 0.84 ± 0.03; control = 0.94 ± 0.03) cingulates. These ratios did not differ between electrodermally responsive and non-responsive patients. When patients were divided into two groups: lower SCL (less than the mean SCL of the control group minus two standard deviations) and normal SCL (similar to the control group), the subgroup with a lower level of SCL showed a lower NAA / (Cr + Cho) ratio in the left cingulate (0.78 ± 0.05) than the controls (0.95 ± 0.02, P < 0.05) and the subgroup with normal SCL (0.88 ± 0.03, P < 0.05). There was a negative correlation between the NAA / (Cr + Cho) ratio in the left cingulate of patients with schizophrenia and the duration of the disease and years under medication. These data suggest the existence of a schizophrenic subgroup characterized by low SCL that could be a consequence of the lower neuronal viability observed in the left cingulate of these patients.
Resumo:
Salvador (BA, Brazil) is an endemic area for human T-cell lymphotrophic virus type 1 (HTLV-1). The overall prevalence of HTLV-1 infection in the general population has been estimated to be 1.76%. HTLV-1 carriers may develop a variety of diseases such as adult T-cell leukemia/lymphoma, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and infective dermatitis associated with HTLV-1 (IDH). IDH is a chronic and severe form of childhood exudative and infective dermatitis involving mainly the scalp, neck and ears. It has recently been observed that 30% of patients with IDH develop juvenile HAM/TSP. The replication of HTLV-1 has been reported to be greater in adult HAM/TSP patients than in asymptomatic HTLV-1 carriers. In the current study, the proviral load of 28 children and adolescents with IDH not associated with HAM/TSP was determined and the results were compared to those obtained in 28 HTLV-1 adult carriers and 28 adult patients with HAM/TSP. The proviral load in IDH patients was similar to that of patients with HAM/TSP and much higher than that found in HTLV-1 carriers. The high levels of proviral load in IDH patients were not associated with age, duration of illness, duration of breast-feeding, or activity status of the skin disease. Since proviral load is associated with neurological disability, these data support the view that IDH patients are at high risk of developing HAM/TSP.
Resumo:
The Caco-2 cell line has been used as a model to predict the in vitro permeability of the human intestinal barrier. The predictive potential of the assay relies on an appropriate in-house validation of the method. The objective of the present study was to develop a single HPLC-UV method for the identification and quantitation of marker drugs and to determine the suitability of the Caco-2 cell permeability assay. A simple chromatographic method was developed for the simultaneous determination of both passively (propranolol, carbamazepine, acyclovir, and hydrochlorothiazide) and actively transported drugs (vinblastine and verapamil). Separation was achieved on a C18 column with step-gradient elution (acetonitrile and aqueous solution of ammonium acetate, pH 3.0) at a flow rate of 1.0 mL/min and UV detection at 275 nm during the total run time of 35 min. The method was validated and found to be specific, linear, precise, and accurate. This chromatographic system can be readily used on a routine basis and its utilization can be extended to other permeability models. The results obtained in the Caco-2 bi-directional transport experiments confirmed the validity of the assay, given that high and low permeability profiles were identified, and P-glycoprotein functionality was established.
Resumo:
N-acetyl-aspartyl-glutamate (NAAG) and its hydrolysis product N-acetyl-L-aspartate (NAA) are among the most important brain metabolites. NAA is a marker of neuron integrity and viability, while NAAG modulates glutamate release and may have a role in neuroprotection and synaptic plasticity. Investigating on a quantitative basis the role of these metabolites in brain metabolism in vivo by magnetic resonance spectroscopy (MRS) is a major challenge since the main signals of NAA and NAAG largely overlap. This is a preliminary study in which we evaluated NAA and NAAG changes during a visual stimulation experiment using functional MRS. The paradigm used consisted of a rest period (5 min and 20 s), followed by a stimulation period (10 min and 40 s) and another rest period (10 min and 40 s). MRS from 17 healthy subjects were acquired at 3T with TR/TE = 2000/288 ms. Spectra were averaged over subjects and quantified with LCModel. The main outcomes were that NAA concentration decreased by about 20% with the stimulus, while the concentration of NAAG concomitantly increased by about 200%. Such variations fall into models for the energy metabolism underlying neuronal activation that point to NAAG as being responsible for the hyperemic vascular response that causes the BOLD signal. They also agree with the fact that NAAG and NAA are present in the brain at a ratio of about 1:10, and with the fact that the only known metabolic pathway for NAAG synthesis is from NAA and glutamate.
Resumo:
Huntington's disease (HD) is a neurologic disorder that is not completely understood; its fundamental physiological mechanisms and chemical effects remain somewhat unclear. Among these uncertainties, we can highlight information about the concentrations of brain metabolites, which have been widely discussed. Concentration differences in affected, compared to healthy, individuals could lead to the development of useful tools for evaluating the progression of disease, or to the advance of investigations of different/alternative treatments. The aim of this study was to compare the thalamic concentration of metabolites in HD patients and healthy individuals using magnetic resonance spectroscopy. We used a 2.0-Tesla magnetic field, repetition time of 1500 ms, and echo time of 135 ms. Spectra from 40 adult HD patients and 26 control subjects were compared. Quantitative analysis was performed using the LCModel method. There were statistically significant differences between HD patients and controls in the concentrations ofN-acetylaspartate+N-acetylaspartylglutamate (NAA+NAAG; t-test, P<0.001), and glycerophosphocholine+phosphocholine (GPC+PCh;t-test, P=0.001) relative to creatine+phosphocreatine (Cr+PCr). The NAA+NAAG/Cr+PCr ratio was decreased by 9% and GPC+PCh/Cr+PCr increased by 17% in patients compared with controls. There were no correlations between the concentration ratios and clinical features. Although these results could be caused by T1 and T2 changes, rather than variations in metabolite concentrations given the short repetition time and long echo time values used, our findings point to thalamic dysfunction, corroborating prior evidence.
Resumo:
Patients with clinical diseases often present psychiatric conditions whose pharmacological treatment is hampered due to hazardous interactions with the clinical treatment and/or disease. This is particularly relevant for major depressive disorder, the most common psychiatric disorder in the general hospital. In this context, nonpharmacological interventions could be useful therapies; and, among those, noninvasive brain stimulation (NIBS) might be an interesting option. The main methods of NIBS are repetitive transcranial magnetic stimulation (rTMS), which was recently approved as a nonresearch treatment for some psychiatric conditions, and transcranial direct current stimulation (tDCS), a technique that is currently limited to research scenarios but has shown promising results. Therefore, our aim was to review the main medical conditions associated with high depression rates, the main obstacles for depression treatment, and whether these therapies could be a useful intervention for such conditions. We found that depression is an important and prevalent comorbidity in a variety of diseases such as epilepsy, stroke, Parkinson's disease, myocardial infarction, cancer, and in other conditions such as pregnancy and in patients without enteral access. We found that treatment of depression is often suboptimal within the above contexts and that rTMS and tDCS therapies have been insufficiently appraised. We discuss whether rTMS and tDCS could have a significant impact in treating depression that develops within a clinical context, considering its unique characteristics such as the absence of pharmacological interactions, the use of a nonenteral route, and as an augmentation therapy for antidepressants.
Resumo:
Acute cerebral hemorrhage (ACH) is an important clinical problem that is often monitored and studied with expensive devices such as computed tomography, magnetic resonance imaging, and positron emission tomography. These devices are not readily available in economically underdeveloped regions of the world, emergency departments, and emergency zones. We have developed a less expensive tool for non-contact monitoring of ACH. The system measures the magnetic induction phase shift (MIPS) between the electromagnetic signals on two coils. ACH was induced in 6 experimental rabbits and edema was induced in 4 control rabbits by stereotactic methods, and their intracranial pressure and heart rate were monitored for 1 h. Signals were continuously monitored for up to 1 h at an exciting frequency of 10.7 MHz. Autologous blood was administered to the experimental group, and saline to the control group (1 to 3 mL) by injection of 1-mL every 5 min. The results showed a significant increase in MIPS as a function of the injection volume, but the heart rate was stable. In the experimental (ACH) group, there was a statistically significant positive correlation of the intracranial pressure and MIPS. The change of MIPS was greater in the ACH group than in the control group. This high-sensitivity system could detect a 1-mL change in blood volume. The MIPS was significantly related to the intracranial pressure. This observation suggests that the method could be valuable for detecting early warning signs in emergency medicine and critical care units.
Resumo:
This study aimed to investigate the therapeutic mechanism of treating SMMC-7721 liver cancer cells with magnetic fluid hyperthermia (MFH) using Fe2O3 nanoparticles. Hepatocarcinoma SMMC-7721 cells cultured in vitro were treated with ferrofluid containing Fe2O3 nanoparticles and irradiated with an alternating radio frequency magnetic field. The influence of the treatment on the cells was examined by inverted microscopy, MTT and flow cytometry. To study the therapeutic mechanism of the Fe2O3 MFH, Hsp70, Bax, Bcl-2 and p53 were detected by immunocytochemistry and reverse transcription polymerase chain reaction (RT-PCR). It was shown that Fe2O3 MFH could cause cellular necrosis, induce cellular apoptosis, and significantly inhibit cellular growth, all of which appeared to be dependent on the concentration of the Fe2O3 nanoparticles. Immunocytochemistry results showed that MFH could induce high expression of Hsp70 and Bax, decrease the expression of mutant p53, and had little effect on Bcl-2. RT-PCR indicated that Hsp70 expression was high in the early stage of MFH (<24 h) and became low or absent after 24 h of MFH treatment. It can be concluded that Fe2O3 MFH significantly inhibited the proliferation of in vitro cultured liver cancer cells (SMMC-7721), induced cell apoptosis and arrested the cell cycle at the G2/M phase. Fe2O3 MFH can induce high Hsp70 expression at an early stage, enhance the expression of Bax, and decrease the expression of mutant p53, which promotes the apoptosis of tumor cells.
Resumo:
There has been concern regarding the use of controversial paradigms for repetitive transcranial magnetic stimulation (rTMS) to manage treatment-resistant depression (TRD). This meta-analysis assessed the efficacy of bilateral rTMS compared with unilateral and sham rTMS in patients with TRD. PubMed, Embase, CENTRAL, PsycINFO, Web of Science, EAGLE and NTIS databases were searched to identify relevant studies, and randomized controlled trials (RCTs) on bilateral rTMS for TRD patients were included. The response was defined as the primary outcome, and remission was the secondary outcome. Ten RCTs that included 634 patients met the eligibility criteria. The risk ratio (RRs) of both the primary and secondary outcomes of bilateral rTMS showed non-significant increases compared to unilateral rTMS (RR=1.01, P=0.93; odds ratio [OR]=0.77, P=0.22). Notably, the RR of the primary bilateral rTMS outcome was significantly increased compared to that for sham rTMS (RR=3.43, P=0.0004). The results of our analysis demonstrated that bilateral rTMS was significantly more effective than sham rTMS but not unilateral rTMS in patients with TRD. Thus, bilateral rTMS may not be a useful paradigm for patients with TRD.
Resumo:
Milk fat globule epidermal growth factor 8 (MFG-E8) is an opsonin involved in the phagocytosis of apoptotic cells. In patients with chronic obstructive pulmonary disease (COPD), apoptotic cell clearance is defective. However, whether aberrant MFG-E8 expression is involved in this defect is unknown. In this study, we examined the expression of MFG-E8 in COPD patients. MFG-E8, interleukin (IL)-1β and transforming growth factor (TGF)-β levels were measured in the plasma of 96 COPD patients (93 males, 3 females; age range: 62.12±10.39) and 87 age-matched healthy controls (85 males, 2 females; age range: 64.81±10.11 years) using an enzyme-linked immunosorbent assay. Compared with controls, COPD patients had a significantly lower plasma MFG-E8 levels (P<0.01) and significantly higher plasma TGF-β levels (P=0.002), whereas there was no difference in plasma IL-1β levels between the two groups. Moreover, plasma MFG-E8 levels decreased progressively between Global Initiative for Chronic Obstructive Lung Disease (GOLD) I and GOLD IV stage COPD. Multiple regression analysis showed that the forced expiratory volume in 1 s (FEV1 % predicted) and smoking habit were powerful predictors of MFG-E8 in COPD (P<0.01 and P=0.026, respectively). MFG-E8 was positively associated with the FEV1 % predicted and negatively associated with smoking habit. The area under the receiver operating characteristic curve was 0.874 (95% confidence interval: 0.798-0.95; P<0.01). Our findings demonstrated the utility of MFG-E8 as a marker of disease severity in COPD and that cigarette smoke impaired MFG-E8 expression in these patients.