125 resultados para interspecific interaction
Resumo:
ABSTRACT This study aimed to verify the differences in radiation intensity as a function of distinct relief exposure surfaces and to quantify these effects on the leaf area index (LAI) and other variables expressing eucalyptus forest productivity for simulations in a process-based growth model. The study was carried out at two contrasting edaphoclimatic locations in the Rio Doce basin in Minas Gerais, Brazil. Two stands with 32-year-old plantations were used, allocating fixed plots in locations with northern and southern exposure surfaces. The meteorological data were obtained from two automated weather stations located near the study sites. Solar radiation was corrected for terrain inclination and exposure surfaces, as it is measured based on the plane, perpendicularly to the vertical location. The LAI values collected in the field were used. For the comparative simulations in productivity variation, the mechanistic 3PG model was used, considering the relief exposure surfaces. It was verified that during most of the year, the southern surfaces showed lower availability of incident solar radiation, resulting in up to 66% losses, compared to the same surface considered plane, probably related to its geographical location and higher declivity. Higher values were obtained for the plantings located on the northern surface for the variables LAI, volume and mean annual wood increase, with this tendency being repeated in the 3PG model simulations.
Resumo:
Some material aspects such as grain size, purity and anisotropy exert an important influence on surface quality, especially in single point diamond turning. The aim of this paper is to present and discuss some critical factors that can limit the accuracy of ultraprecision machining of non-ferrous metals and to identify the effects of them on the cutting mechanism with single point diamond tools. This will be carried out through observations of machined surfaces and chips produced using optical and scanning electron microscopy. Solutions to reduce the influence of some of these limiting factors related with the mechanism of generation of mirror-like surfaces will be discussed.
Resumo:
The nonlinear interaction between Görtler vortices (GV) and three-dimensional Tollmien-Schlichting (TS) waves nonlinear interaction is studied with a spatial, nonparallel model based on the Parabolized Stability Equations (PSE). In this investigation the effect of TS wave frequency on the nonlinear interaction is studied. As verified in previous investigations using the same numerical model, the relative amplitudes and growth rates are the dominant parameters in GV/TS wave interaction. In this sense, the wave frequency influence is important in defining the streamwise distance traveled by the disturbances in the unstable region of the stability diagram and in defining the amplification rates that they go through.
Resumo:
Modelling of the slug structure requires a new effort on fundamental research. To clarify some aspects of the horizontal slug flow, an experimental study of the behaviour of two isolated bubbles in a single-phase liquid flow was performed. This procedure was adopted to avoid the overlap of different phenomena induced by a train of long bubbles. The experimental facility consists of a 90-m horizontal PVC pipe with internal diameter of 0,053 m. The behaviour of two single air bubbles travelling in a water flow was studied. Focus was given on the influence of the distance between the bubbles on the velocity of the second bubble. This study allows the understanding of the mechanism of overtaking that takes place right after the slug formation and that precedes the coalescence of bubbles in a slug flow. The results show that bubbles placed behind a liquid slug smaller than a critical value move faster than the leading one. Otherwise, they move slower than the leading one.
Resumo:
In many engineering applications, compliant piping systems conveying liquids are subjected to inelastic deformations due to severe pressure surges such as plastic tubes in modern water supply transmission lines and metallic pipings in nuclear power plants. In these cases the design of such systems may require an adequate modeling of the interactions between the fluid dynamics and the inelastic structural pipe motions. The reliability of the prediction of fluid-pipe behavior depends mainly on the adequacy of the constitutive equations employed in the analysis. In this paper it is proposed a systematic and general approach to consistently incorporate different kinds of inelastic behaviors of the pipe material in a fluid-structure interaction analysis. The main feature of the constitutive equations considered in this work is that a very simple numerical technique can be used for solving the coupled equations describing the dynamics of the fluid and pipe wall. Numerical examples concerning the analysis of polyethylene and stainless steel pipe networks are presented to illustrate the versatility of the proposed approach.
Resumo:
The current knowledge of light quality effects on plant morphogenesis and development represents a new era of understanding on how plant communities perceive and adjust to available resources. The most important consequences of light quality cues, often mediated by decreasing in red far-red ratios with respect to the spectral composition of incident sunlight radiation, affecting weed-crop interaction are the increased plant height and shoot to root ratio in anticipation of competition by light quantity, water or nutrients. Although the concepts related to light quality have been extensively studied and several basic process of this phenomenon are well known, little applications of photomorphogenic signaling currently are related to agricultural problems or weed management. The objectives of this review are to describe how light quality change can be a triggering factor of interspecific interference responses, to analyze how this phenomenon can be used to predict weed interference, to reevaluate the critical periods of interference concept, and to discuss its potential contribution towards developing more weed competitive crop varieties. Knowledge on light quality responses involved in plant sensing of interspecific competition could be used to identify red/far-red threshold values, indicating when weed control should be started. Light quality alterations by weeds can affect grain crop development mainly in high yielding fields. Unlike the traditional concept or the critical period of competition, light quality mediated interference implies that the critical period for weed control could start before the effects of direct resource (water, nutrients and available light) limitation actually occur. The variability in light quality responses among crop genotypes and the identification of mutants insensitive to light quality effects indicate that this characteristic can be selected or modified to develop cultivars with enhanced interspecific interference ability. Knowledge on light quality-elicited responses represents a new possibility to understand the underlying biology of interspecific interference, and could be used in the development of new weed management technologies.
Resumo:
Leaves of Ficus microcarpa L. f., Quercus robur L., and Alchornea triplinervia (Spreng.) Muell. Arg., submerged in a stream of the Atlantic rainforest in the "Reserva Biológica do Alto da Serra de Paranapiacaba", State of São Paulo, Brazil, were collected monthly, from April to November 1990, in order to determine the number of fungal occurrences (zoosporic fungi and aquatic Hyphomycetes), and the content of total N (%), total P (%), K+ (%), Ca+2 (%), Mg+2 (%), S+3 (%), Fe+3 (ppm), Cu+3 (ppm), Mn+2 (ppm), Zn+2 (ppm), Bo (ppm), Na+2 (ppm) and Al+3 (ppm). According to the tests of Kruskal-Wallis, Mann-Whitney and Wilcoxon, the means of the mineral content of the three types of leaves were significantly different, except for Mg+2 (%), Mn+2 (ppm), Zn+2 (ppm) and Na+2 (ppm). On comparing the mineral content with the number of fungal occurrence, an independence test showed a positive correlation between the presence of zoosporic fungi on the leaves of A. triplinervia and the total nitrogen, phosphorus and S+3 content, whereas the aquatic Hyphomycetes depended on the amount of Ca+2 available. Regarding leaves of F. microcarpa, the occurrence of zoosporic fungi was linked to the S+3 level, and the presence of aquatic Hyphomycetes, to the content of K+, Ca+2, S+3 and Bo. On Q. robur leaves, zoosporic fungi showed a positive correlation with the Ca+2 content, but a negative one with Fe+3 and Al+3 levels, while the occurrence of aquatic Hyphomycetes was influenced by the content of Ca+2, Mg+2, Fe+3, Al+3, Mn+2, Zn+2 and Na+2. The correlation between the occurrence number of aquatic Hyphomycetes and a high mineral content indicates that their nutritional requirements may be more complex than those of zoosporic fungi. Further studies are still required to understand the implications of this tendency on the diversity of aquatic native mycota.
Resumo:
This study aimed to characterize the reproductive system of Passiflora capsularis L. and P. rubra L. In vivo controlled pollinations, in vitro pollen germination and pollen-ovule (P:O) ratio evaluation were conducted. In self-pollination, intraspecific and interspecific pollination, P. capsularis showed means of 62.5, 68.7 and 48.4% of fertilized flowers, while in P. rubra, the averages were 67.2, 62.5 and 46.9%, respectively. For in vitro germination, 52.2% of P. capsularis pollen grains germinated while in P. rubra, the percentage was 64.4. The P:O ratio was 22.4 for P. capsularis, and 27.4 for P. rubra, which included them in the category of obligatory autogamous. Passiflora capsularis and P. rubra can reproduce both by self-pollination and cross-pollination, and crossings between the two species succeeded though the success rate was lower than 50%. The characteristics of the reproductive system of both species allow the use of greater range of options on breeding methods for production of ornamental Passiflora plants.
Resumo:
Intra and interspecific variability was measured in the genus Lycopersicon for the traits: productivity rate (PR, total number of regenerated shoots/total number of cultures), regeneration percentage (%R, number of cultures regenerating shoots or primordia/total number of cultures) and callus percentage (%C, number of cultures only producing callus/total number of cultures). Leaf explants from various genotypes of L. esculentum, L. esculentum var. cerasiforme, L. pimpinellifolium and L. peruvianum were placed on Murashige and Skoog (Physiol. Plant. 15: 473-493, 1962) medium + 0.175 mg/l IAA + 2.25 mg/l BA. Significant differences among species and among genotypes within the same species were found, while genotypes from different species showed similar responses.
Resumo:
Nitric oxide synthase (NOS)-containing neurons have been localized in various parts of the CNS. These neurons occur in the hypothalamus, mostly in the paraventricular and supraoptic nuclei and their axons project to the neural lobe of the pituitary gland. We have found that nitric oxide (NO) controls luteinizing hormone-releasing hormone (LHRH) release from the hypothalamus acting as a signal transducer in norepinephrine (NE)-induced LHRH release. LHRH not only releases LH from the pituitary but also induces sexual behavior. On the other hand, it is known that oxytocin also stimulates mating behavior and there is some evidence that oxytocin can increase NE release. Therefore, it occurred to us that oxytocin may also stimulate LHRH release via NE and NO. To test this hypothesis, we incubated medial basal hypothalamic (MBH) explants from adult male rats in vitro. Following a preincubation period of 30 min, MBH fragments were incubated in Krebs-Ringer bicarbonate buffer in the presence of various concentrations of oxytocin. Oxytocin released LHRH at concentrations ranging from 0.1 nM to 1 µM with a maximal stimulatory effect (P<0.001) at 0.1 µM, but with no stimulatory effect at 10 µM. That these effects were mediated by NO was shown by the fact that incubation of the tissues with NG-monomethyl-L-arginine (NMMA), a competitive inhibitor of NOS, blocked the stimulatory effects. Furthermore, the release of LHRH by oxytocin was also blocked by prazocin, an a1-adrenergic receptor antagonist, indicating that NE mediated this effect. Oxytocin at the same concentrations also increased the activity of NOS (P<0.01) as measured by the conversion of [14C]arginine to citrulline, which is produced in equimolar amounts with NO by the action of NOS. The release of LHRH induced by oxytocin was also accompanied by a significant (P<0.02) increase in the release of prostaglandin E2 (PGE2), a mediator of LHRH release that is released by NO. On the other hand, incubation of neural lobes with various concentrations of sodium nitroprusside (NP) (300 or 600 µM), a releaser of NO, revealed that NO acts to suppress (P<0.01) the release of oxytocin. Therefore, our results indicate that oxytocin releases LHRH by stimulating NOS via NE, resulting in an increased release of NO, which increases PGE2 release that in turn induces LHRH release. Furthermore, the released NO can act back on oxytocinergic terminals to suppress the release of oxytocin in an ultrashort-loop negative feedback
Resumo:
One of the primary goals of the study of thirst is to understand why drinking occurs under ad libitum or natural conditions. An appreciation of the experimental strategies applied by physiologists studying thirst from different perspectives can facilitate progress toward understanding the natural history of drinking behavior. Drinking research carried out using three separate perspectives - homeostatic, circadian rhythms, and food-associated - generates types of information about the mechanisms underlying drinking behavior. By combining research strategies and methods derived from each of these approaches, it has been possible to gain new information that increases our appreciation of the interactions between homeostatic mechanisms and circadian rhythms in the modulation of water intake and how these might be related to drinking associated with food intake under near natural conditions
Resumo:
Rotaviruses and reoviruses are involved in human and animal diseases. It is known that both viruses penetrate the gastrointestinal tract but their interaction with phagocytic cells is unknown. To study this interaction, peritoneal resident phagocytic cells were used and rotavirus and reovirus replication in peritoneal phagocytic cells was observed. However, rotavirus replication in these cells led to the production of defective particles since MA-104 cells inoculated with rotavirus phagocytic cell lysate did not show any evidence of virus replication. On the basis of these results, we suggest that, although reovirus dissemination may be helped by these phagocytic cells, these cells may control rotavirus infection and probably contribute to the prevention of its dissemination.
Resumo:
Drugs which influence 5-HTergic mechanisms can modify neuroleptic-induced catalepsy (NC) in rodents, a phenomenon produced by striatal dopamine (DA) receptor blockade. Previous research also suggests a role for endogenous nitric oxide (NO) in the modulation of striatal DAergic neurotransmission; in addition, NO seems to play a role in the 5-HT reuptake mechanism. It is known that clomipramine potentiates NC in mice, but the reported effects of selective 5-HT reuptake inhibitors (SSRIs) in this model are rather contradictory. We then decided to re-address this issue, investigating the effect of fluoxetine (FX), an SSRI, on NC. In view of the ubiquitous role of NO as a central neuromodulator, we also studied the effect of isosorbide dinitrate (ID), a centrally active NO donor, and how both drugs interact to affect the phenomenon of NC. Catalepsy was induced in male albino mice with haloperidol (H; 1 mg/kg, ip) and measured at 30-min interval by means of a bar test. Drugs (FX, ID and FX + ID) or saline (controls) were injected ip 30 min before H, with each animal used only once. FX (5 mg/kg) significantly reduced NC, with maximal attenuation (about 74%) occurring at 150 min after H. ID (5 mg/kg) also inhibited NC (150 min: 62% attenuation). The combined drugs (FX + ID group), however, caused a great potentiation of NC (4.7-fold at its maximum, at 90 min). The effect observed with ID is compatible with the hypothesis that NO increases DA release in the striatum. The attenuation of NC observed with FX may be due to a preferential net effect on the raphe somatodendritic synapse, where inhibitory 5-HT1A autoreceptors are operative. The enhancement of NC caused by combined administration of FX and ID suggests the presence of a pharmacodynamic interaction, whose mechanism, still unclear, may be related to a decrease in striatal DA release
Resumo:
In this communication we review the results obtained with the confocal laser scanning microscope to characterize the interaction of epimastigote and trypomastigote forms of Trypanosoma cruzi and tachyzoites of Toxoplasma gondii with host cells. Early events of the interaction process were studied by the simultaneous localization of sites of protein phosphorylation, revealed by immunocytochemistry, and sites of actin assembly, revealed by the use of labeled phaloidin. The results obtained show that proteins localized in the interaction sites are phosphorylated. The process of formation of the parasitophorous vacuole was monitored by labeling the host cell surface with fluorescent probes for lipids (PKH26), proteins (DTAF) and sialic acid (FITC-thiosemicarbazide) before interaction with the parasites. Evidence was obtained indicating transfer of components of the host cell surface to the parasite surface in the beginning of the interaction process. We also analyzed the distribution of cytoskeletal structures (microtubules and microfilaments visualized with specific antibodies), mitochondria (visualized with rhodamine 123), the Golgi complex (visualized with C6-NBD-ceramide) and the endoplasmic reticulum (visualized with anti-reticulin antibodies and DIOC6) during the evolution of intracellular parasitism. The results obtained show that some, but not all, structures change their position during evolution of the intracellular parasitism.
Resumo:
Flavobacterium heparinum is a soil bacterium that produces several mucopolysaccharidases such as heparinase, heparitinases I and II, and chondroitinases AC, B, C and ABC. The purpose of the present study was to optimize the preparation of F. heparinum chondroitinases, which are very useful tools for the identification and structural characterization of chondroitin and dermatan sulfates. We observed that during the routine procedure for cell disruption (ultrasound, 100 kHz, 5 min) some of the chondroitinase B activity was lost. Using milder conditions (2 min), most of the chondroitinase B and AC protein was solubilized and the enzyme activities were preserved. Tryptic soy broth without glucose was the best culture medium both for bacterial growth and enzyme induction. Chondroitinases AC and B were separated from each other and also from glucuronidases and sulfatases by hydrophobic interaction chromatography on HP Phenyl-Sepharose. A rapid method for screening of the column fractions was also developed based on the metachromatic shift of the color of dimethylmethylene blue.