106 resultados para gut diverticulum


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present review we address oral tolerance as an important biological phenomenon and discuss how it is affected by aging. Other factors such as frequency of feeding and previous digestion of the antigen also seem to influence the establishment of oral tolerance. We also analyze immunoglobulin isotypes of specific antibodies formed by tolerant and immunized animals of different ages submitted to different conditions of oral antigen administration. Isotypic patterns were studied as a parameter for assessing the pathways of B and T cell interactions leading to antibody production

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oral tolerance is a phenomenon that may occur in animals exposed to protein antigens for the first time by the oral route. They become unable to produce immune responses at the levels normally observed when they are immunized parenterally with antigen in the presence of adjuvants. Lipids have been used as adjuvants for both parenteral and oral immunization. In the present study we coupled ovalbumin with palmitate residues by incubating the protein with the N-hydroxysuccinimide palmitate ester and tested the preparation for its ability to induce oral tolerance. This was performed by giving 20 mg of antigen to mice by the oral route 7 days prior to parenteral immunization in the presence of Al(OH)3. Mice were bled one week after receiving a booster that was given 2 weeks after primary immunization. Specific antibodies were detected by ELISA. Despite the fact that the conjugates are as immunogenic as the unmodified protein when parenterally injected in mice, they failed to induce oral tolerance. This discrepancy could be explained by differences in the intestinal absorption of the two forms of the antigen. In fact, when compared to the non-conjugated ovalbumin, a fast and high absorption of the lipid-conjugated form of ovalbumin was observed by "sandwich" ELISA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toxic cyanobacteria are common in Portuguese freshwaters and the most common toxins are microcystins. The occurrence of microcystin-LR (MCYST-LR) has been reported since 1990 and a significant number of water reservoirs that are used for drinking water attain high levels of this toxin. Aquatic animals that live in eutrophic freshwater ecosystems may be killed by microcystins but in many cases the toxicity is sublethal and so the animals can survive long enough to accumulate the toxins and transfer them along the food chain. Among these, edible mollusks, fish and crayfish are especially important because they are harvested and sold for human consumption. Mussels that live in estuarine waters and rivers where toxic blooms occur may accumulate toxins without many significant acute toxic effects. In this study data are presented in order to understand the dynamics of the accumulation and depuration of MCYST-LR in mussels. The toxin is readily accumulated and persists in the shellfish for several days after contact. In the crayfish the toxin is accumulated mainly in the gut but is also cleared very slowly. In carps, although the levels of the toxins found in naturally caught specimens were not very high, some toxin was found in the muscle and not only in the viscera. This raises the problem of the toxin accumulation by fish and possible transfer through the food chain. The data gathered from these experiments and from naturally caught specimens are analyzed in terms of risk for human consumption. The occurrence of microcystins in tap water and the incidence of toxic cyanobacteria in fresh water beaches in Portugal are reported. The Portuguese National Monitoring Program of cyanobacteria is mentioned and its implications are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiac surgery involving ischemic arrest and extracorporeal circulation is often associated with alterations in vascular reactivity and permeability due to changes in the expression and activity of isoforms of nitric oxide synthase and cyclooxygenase. These inflammatory changes may manifest as systemic hypotension, coronary spasm or contraction, myocardial failure, and dysfunction of the lungs, gut, brain and other organs. In addition, endothelial dysfunction may increase the occurrence of late cardiac events such as graft thrombosis and myocardial infarction. These vascular changes may lead to increased mortality and morbidity and markedly lengthen the time of hospitalization and cost of cardiac surgery. Developing a better understanding of the vascular changes operating through nitric oxide synthase and cyclooxygenase may improve the care and help decrease the cost of cardiovascular operations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of a fraction (T1) of Tityus serrulatus scorpion venom prepared by gel filtration on gastric emptying and small intestinal transit were investigated in male Wistar rats. Fasted animals were anesthetized with urethane, submitted to tracheal intubation and right jugular vein cannulation. Scorpion toxin (250 µg/kg) or saline was injected iv and 1 h later a bolus of saline (1.0 ml/100 g) labeled with 99m technetium-phytate (10 MBq) was administered by gavage. After 15 min, animals were sacrificed and the radioactivity remaining in the stomach was determined. Intestinal transit was evaluated by instillation of a technetium-labeled saline bolus (1.0 ml) through a cannula previously implanted in the duodenum. After 60 min, the progression of the marker throughout 7 consecutive gut segments was estimated by the geometric center method. Gastric retention of the liquid test meal in rats injected with scorpion toxin (median: 88%; range: 52-95%) was significantly higher (P<0.02) than in controls (54%; 21-76%), an effect which was not modified by gastric secretion blockade with ranitidine. The progression of the isotope marker throughout the small intestine was significantly slower (P<0.05) in rats treated with toxin (1.2; 1.0-2.5) than in control animals (2.3; 1.0-3.2). Inhibition of both gastric emptying and intestinal transit in rats injected with scorpion toxin suggests an increased resistance to aboral flow, which might be caused by abnormal neurotransmitter release or by the local effects of venom on smooth muscle cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We extended the characterization of the DNA puff BhB10-1 gene of Bradysia hygida by showing that, although its mRNA is detected only at the end of the fourth larval instar, BhB10-1 expression is not restricted to the salivary gland, the tissue in which this gene is amplified. Different amounts of BhB10-1 mRNA were detected in other larval tissues such as gut, Malpighian tubules, fat body, brain and cuticle, suggesting that this gene is expressed differentially in the various tissues analyzed. Analysis of transgenic Drosophila carrying the BhB10-1 transcription unit and flanking sequences revealed that the tested fragment promotes transcription in a constitutive manner. We suggest that either cis-regulatory elements are missing in the transgene or factors that temporally regulate the BhB10-1 gene in B. hygida are not conserved in Drosophila.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sm14 is a 14-kDa vaccine candidate antigen from Schistosoma mansoni that seems to be involved in cytoplasmic trafficking of fatty acids. Although schistosomes have a high requirement for lipids, they are not able to synthesize fatty acids and sterols de novo. Thus, they must acquire host lipids. In order to determine whether Sm14 is present in different stages of the life cycle of the parasite, we performed RT-PCR. Sm14 mRNA was identified in all stages of the life cycle studied, mainly schistosomulum, adult worm and egg. Additionally, we used a rabbit anti-Sm14 polyclonal antibody in an indirect immunofluorescence assay to localize Sm14 in adult worm sections. The basal lamella of the tegument and the gut epithelium were strongly labeled. These tissues have a high flow of and demand for lipids, a finding that supports the putative role of Sm14 as an intracellular transporter of fatty acids from host cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gut mucosa is a major site of contact with antigens from food and microbiota. Usually, these daily contacts with natural antigens do not result in inflammatory reactions; instead they result in a state of systemic hyporesponsiveness named oral tolerance. Inflammatory bowel diseases (IBD) are associated with the breakdown of the immunoregulatory mechanisms that maintain oral tolerance. Several animal models of IBD/colitis are available. In mice, these include targeted disruptions of the genes encoding cytokines, T cell subsets or signaling proteins. Colitis can also be induced by intrarectal administration of chemical substances such as 2,4,6-trinitrobenzene sulfonic acid in 50% ethanol. We report here a novel model of colitis induced by intrarectal administration of 50% ethanol alone. Ethanol-treated mice develop an inflammatory reaction in the colon characterized by an intense inflammatory infiltrate in the mucosa and submucosa of the large intestine. They also present up-regulation of both interferon gamma (IFN-gamma) and interleukin-4 (IL-4) production by cecal lymph node and splenic cells. These results suggest a mixed type of inflammation as the substrate of the colitis. Interestingly, cells from mesenteric lymph nodes of ethanol-treated mice present an increase in IFN-gamma production and a decrease in IL-4 production indicating that the cytokine balance is altered throughout the gut mucosa. Moreover, induction of oral tolerance to ovalbumin is abolished in these animals, strongly suggesting that ethanol-induced colitis interferes with immunoregulatory mechanisms in the intestinal mucosa. This novel model of colitis resembles human IBD. It is easy to reproduce and may help us to understand the mechanisms involved in IBD pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most contacts with food protein and microbiota antigens occur at the level of the gut mucosa. In animal models where this natural stimulation is absent, such as germ-free and antigen-free mice, the gut-associated lymphoid tissue (GALT) and systemic immunological activities are underdeveloped. We have shown that food proteins play a critical role in the full development of the immune system. C57BL/6 mice weaned to a diet in which intact proteins are replaced by equivalent amounts of amino acids (Aa diet) have a poorly developed GALT as well as low levels of serum immunoglobulins (total Ig, IgG, and IgA, but not IgM). In the present study, we evaluated whether the introduction of a protein-containing diet in 10 adult Aa-fed C57BL/6 mice could restore their immunoglobulin levels and whether this recovery was dependent on the amount of dietary protein. After the introduction of a casein-containing diet, Aa-fed mice presented a fast recovery (after 7 days) of secretory IgA (from 0.33 to 0.75 mg/mL, while in casein-fed mice this value was 0.81 mg/mL) and serum immunoglobulin levels (from 5.39 to 10.25 mg/mL of total Ig). Five percent dietary casein was enough to promote the restoration of secretory IgA and serum immunoglobulin levels to a normal range after 30 days feeding casein diet (as in casein-fed mice - 15% by weight of diet). These data suggest that the defect detected in the immunoglobulin levels was a reversible result of the absence of food proteins as an antigenic stimulus. They also indicate that the deleterious consequences of malnutrition at an early age for some immune functions may be restored by therapeutic intervention later in life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery of non-adrenergic, non-cholinergic neurotransmission in the gut and bladder in the early 1960's is described as well as the identification of adenosine 5'-triphosphate (ATP) as a transmitter in these nerves in the early 1970's. The concept of purinergic cotransmission was formulated in 1976 and it is now recognized that ATP is a cotransmitter in all nerves in the peripheral and central nervous systems. Two families of receptors to purines were recognized in 1978, P1 (adenosine) receptors and P2 receptors sensitive to ATP and adenosine diphosphate (ADP). Cloning of these receptors in the early 1990's was a turning point in the acceptance of the purinergic signalling hypothesis and there are currently 4 subtypes of P1 receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of G protein-coupled receptors. Both short-term purinergic signalling in neurotransmission, neuromodulation and neurosecretion and long-term (trophic) purinergic signalling of cell proliferation, differentiation, motility, death in development and regeneration are recognized. There is now much known about the mechanisms underlying ATP release and extracellular breakdown by ecto-nucleotidases. The recent emphasis on purinergic neuropathology is discussed, including changes in purinergic cotransmission in development and ageing and in bladder diseases and hypertension. The involvement of neuron-glial cell interactions in various diseases of the central nervous system, including neuropathic pain, trauma and ischemia, neurodegenerative diseases, neuropsychiatric disorders and epilepsy are also considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Control of the heart rate and cardiorespiratory interactions (CRI) is predominantly parasympathetic in all jawed vertebrates, with the sympathetic nervous system having some influence in tetrapods. Respiratory sinus arrhythmia (RSA) has been described as a solely mammalian phenomenon but respiration-related beat-to-beat control of the heart has been described in fish and reptiles. Though they are both important, the relative roles of feed-forward central control and peripheral reflexes in generating CRI vary between groups of fishes and probably between other vertebrates. CRI may relate to two locations for the vagal preganglionic neurons (VPN) and in particular cardiac VPN in the brainstem. This has been described in representatives from all vertebrate groups, though the proportion in each location is variable. Air-breathing fishes, amphibians and reptiles breathe discontinuously and the onset of a bout of breathing is characteristically accompanied by an immediate increase in heart rate plus, in the latter two groups, a left-right shunting of blood through the pulmonary circuit. Both the increase in heart rate and opening of a sphincter on the pulmonary artery are due to withdrawal of vagal tone. An increase in heart rate following a meal in snakes is related to withdrawal of vagal tone plus a non-adrenergic-non-cholinergic effect that may be due to humoral factors released by the gut. Histamine is one candidate for this role.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intestinal barrier dysfunction plays an important role in spontaneous bacterial peritonitis. In the present study, changes in the intestinal barrier with regard to levels of secretory immunoglobulin A (SIgA) and its components were studied in fulminant hepatic failure (FHF). Immunohistochemistry and double immunofluorescent staining were used to detect intestinal IgA, the secretory component (SC) and SIgA in patients with FHF (20 patients) and in an animal model with FHF (120 mice). Real-time PCR was used to detect intestinal SC mRNA in the animal model with FHF. Intestinal SIgA, IgA, and SC staining in patients with FHF was significantly weaker than in the normal control group (30 patients). Intestinal IgA and SC staining was significantly weaker in the animal model with FHF than in the control groups (normal saline: 30 mice; lipopolysaccharide: 50 mice; D-galactosamine: 50 mice; FHF: 120 mice). SC mRNA of the animal model with FHF at 2, 6, and 9 h after injection was 0.4 ± 0.02, 0.3 ± 0.01, 0.09 ± 0.01, respectively. SC mRNA of the animal model with FHF was significantly decreased compared to the normal saline group (1.0 ± 0.02) and lipopolysaccharide group (0.89 ± 0.01). The decrease in intestinal SIgA and SC induced failure of the intestinal immunologic barrier and the attenuation of gut immunity in the presence of FHF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective was to elucidate the relationships between serum concentrations of the gut hormone peptide YY (PYY) and ghrelin and growth development in infants for potential application to the clinical observation index. Serum concentrations of PYY and ghrelin were measured using radioimmunoassay from samples collected at the clinic. For each patient, gestational age, birth weight, time required to return to birth weight, rate of weight gain, time required to achieve recommended daily intake (RDI) standards, time required for full-gastric feeding, duration of hospitalization, and time of administration of total parenteral nutrition were recorded. Serum PYY and ghrelin concentrations were significantly higher in the preterm group (N = 20) than in the full-term group (N = 20; P < 0.01). Within the preterm infant group, the serum concentrations of PYY and ghrelin on postnatal day (PND) 7 (ghrelin = 1485.38 ± 409.24; PYY = 812.37 ± 153.77 ng/L) were significantly higher than on PND 1 (ghrelin = 956.85 ± 223.09; PYY = 545.27 ± 204.51 ng/L) or PND 3 (ghrelin = 1108.44 ± 351.36; PYY = 628.96 ± 235.63 ng/L; P < 0.01). Both serum PYY and ghrelin concentrations were negatively correlated with body weight, and the degree of correlation varied with age. Serum ghrelin concentration correlated negatively with birth weight and positively with the time required to achieve RDI (P < 0.05). In conclusion, serum PYY and ghrelin concentrations reflect a negative energy balance, predict postnatal growth, and enable compensation. Further studies are required to elucidate the precise concentration and roles of PYY and ghrelin in newborns and to determine the usefulness of measuring these hormones in clinical practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gut-derived endotoxin and pathogenic bacteria have been proposed as important causative factors of morbidity and death during heat stroke. However, it is still unclear what kind of damage is induced by heat stress. In this study, the rat intestinal epithelial cell line (IEC-6) was treated with heat stress or a combination of heat stress and lipopolysaccharide (LPS). In addition, propofol, which plays an important role in anti-inflammation and organ protection, was applied to study its effects on cellular viability and apoptosis. Heat stress, LPS, or heat stress combined with LPS stimulation can all cause intestinal epithelial cell damage, including early apoptosis and subsequent necrosis. However, propofol can alleviate injuries caused by heat stress, LPS, or the combination of heat stress and LPS. Interestingly, propofol can only mitigate LPS-induced intestinal epithelial cell apoptosis, and has no protective role in heat-stress-induced apoptosis. This study developed a model that can mimic the intestinal heat stress environment. It demonstrates the effects on intestinal epithelial cell damage, and indicated that propofol could be used as a therapeutic drug for the treatment of heat-stress-induced intestinal injuries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isolation of heat-stable enterotoxin (STa) from Escherichia coli and cholera toxin from Vibrio cholerae has increased our knowledge of specific mechanisms of action that could be used as pharmacological tools to understand the guanylyl cyclase-C and the adenylyl cyclase enzymatic systems. These discoveries have also been instrumental in increasing our understanding of the basic mechanisms that control the electrolyte and water balance in the gut, kidney, and urinary tracts under normal conditions and in disease. Herein, we review the evolution of genes of the guanylin family and STa genes from bacteria to fish and mammals. We also describe new developments and perspectives regarding these novel bacterial compounds and peptide hormones that act in electrolyte and water balance. The available data point toward new therapeutic perspectives for pathological features such as functional gastrointestinal disorders associated with constipation, colorectal cancer, cystic fibrosis, asthma, hypertension, gastrointestinal barrier function damage associated with enteropathy, enteric infection, malnutrition, satiety, food preferences, obesity, metabolic syndrome, and effects on behavior and brain disorders such as attention deficit, hyperactivity disorder, and schizophrenia.