95 resultados para green consumer
Resumo:
The objective of this study was to determine the effect of adding Amaranth leaf powder on the nutrient content and consumer acceptability of extruded provitamin A-biofortified (PVA) maize snacks. Flours of four varieties of PVA maize were composited with Amaranth leaf powder at 0, 1 and 3% (w/w) substitution of, respectively, and extruded into snacks. The ash content of the snacks increased from 0.53 g/100 g-0.58 g/100 g to 0.650 g/100g-89 g/100 g and protein content increased from 9.12 g/100 g-10.94 g/100 g when Amaranth was increased from 0% to 3%. Similarly, lysine content increased from 0.10 g/100 g to 0.17 g/100 g, whilst methionine increased from 0.14 g/100 g to 0.19 g/100 g. The provitamin A content of the snacks ranged from 1.29 µg/g to 1.40 µg/g at 0% Amaranth and 1.54 µg/g to 1.78 µg/g at 3% Amaranth. The acceptability of the snacks decreased with increasing Amaranth concentration, only a very small proportion (2-8%) of the panel liked the snacks extremely. PVA maize with added Amaranth leaf powder has a potential for use in nutritious and healthy extruded snacks, but the consumer acceptability of the snacks should be improved.
Resumo:
Abstract A wide range of quality parameters have been used to describe maize flours for food use, but there is no general agreement about the most suitable parameters for breadmaking. The objective of this study was to identify the maize flour parameters related to the consumer perceived quality of Portuguese broa bread (more than 50% maize flour). The influence of eleven maize landraces was assessed and compared with commercial flour using baking tests. The broa were evaluated by instrumental (colour, firmness) and sensory hedonic analysis with a consumer panel of 52 assessors. The broa sensory analysis revealed similar assessments among landraces and the lowest scores for commercial flour. The flour particle size distribution is the major influence, with commercial flour showing the highest mean diameter and a large particle distribution range. Broa consumer panel linkage associations and specific sensory descriptors have been identified; age as an influence on colour, cohesiveness, and source region as an influence on appearance and texture.
Resumo:
The occurrence of green soybean seed due to forced maturation or premature plant death caused by drought or foliar and/or root diseases has been common in several Brazilian production areas. Physiological quality of seed lots with green seed may have their germination and vigor potentials affected and therefore discarded by the grain industry. The objective of this experiment was to determine the maximum tolerated level of green seed in soybean seed lots, which is information of major importance for seed producers when taking the decision whether to sell these lots. Soybean seed of the cultivars CD 206, produced in Ubirata, Parana, and FMT Tucunare, produced in Alto Garças, Mato Grosso, were used in the study. Green seed and yellow seed of both cultivars were mixed in the following proportions: 0%, 3%, 6%, 9%, 12%, 15%, 20%, 30%, 40%, 50%, 75% and 100%. Seed quality was evaluated by the germination, accelerated aging, tetrazolium and electrical conductivity tests. The contents of a, b and total chlorophyll in the seed were also determined. A complete randomized block design in a factorial scheme (two cultivars x 12 levels of green seed) was used. Seed quality was negatively affected and chlorophyll contents incremented with the increase in the percentage of green seed. Seed germination, viability and vigor, measured by the accelerated aging test, were not reduced with levels of up to 3% green seed, for both cultivars. Levels above 6% green seed significantly reduced the quality of the seed. The quality of seed lots with 9% or more green seed was significantly reduced to the point that their commercialization is not recommended.
Resumo:
Soybeans grown under water stress associated with high temperatures during seed maturation and pre-harvest may produce green seed (GS) with expressive reduction in seed quality. The objectives of this study were to evaluate the response of different soybean cultivars grown under these stressful conditions regarding their susceptibility to GS production and to determine the chlorophyll retention levels and the chlorophyllase activity in the seeds. Seeds of four soybean cultivars [BRS 133, CD 206, MG/BR 46 (Conquista) and BRSMG 251 (Robusta)] were grown under greenhouse conditions until R5.5. At R6, the plants were transferred to phytotrons under temperature stress (from 28ºC to 36ºC) and with water stresses of 10% gravimetric moisture, no water and normal supply. Seeds were harvested at R9 when the percentage of GS and weight of 100 seeds were determined. The contents of a, b and total chlorophylls and the chlorophyllase activity were also determined. The expression of GS production under these conditions varied among cultivars: Conquista and Robusta were considered more susceptible to the production of GS compared to 'BRS 133' and 'CD 206'. These cultivars produced lower GS levels, lower chlorophyll retention and higher chlorophyllase activity compared to Robusta and Conquista. Soybean plants submitted to water and temperature stresses produced high levels of GS, which were small, light and had high chlorophyll contents and low chlorophyllase activity. The contents of a, b and total chlorophylls in GS were inversely proportional to the chlorophyllase activity.
Resumo:
Hot and dry weather conditions during soybean [Glycine max (L.) Merrill] seed maturation can cause forced maturation of the seed, resulting in the production of high levels of green seed, which may be detrimental to seed germination. These stressful conditions were imposed on soybean plants during seed maturation to investigate the production of green seeds and seed quality. Plants of the CD 206 cultivar were grown in a greenhouse until the R5.5 growing stage and then transferred to phytotrons at R6 and R7.2 for stress induction. Plants were subjected to two temperature regimes, high (28ºC to 36ºC) and normal (19ºC to 26ºC), and four soil water availability conditions, control (adequate water supply), 30% gravimetric moisture (GM), 20% GM and no water supply. Seed were harvested at R9. Green seed percentages and 100-seed weights from the lower, middle and upper thirds of each plant were determined. Seed quality was assessed by germination, tetrazolium (viability and vigor) and electrical conductivity tests. Occurrence of green seed varied from 9% to 86%, depending on the severity of the stresses imposed. High temperature, coupled with no water supply at R6, resulted in a pronounced occurrence of green seeds. There was no difference in the percentage of green seeds among the plant segments. Seed quality was negatively affected by the incidence of green seeds. A procedure for screening soybean genotypes in a phytotron for their tolerance and/or susceptibility to the production of green seeds was developed.