124 resultados para gaseous pollutants
Resumo:
This study investigated the levels of plasticizer endocrine disruptors (diethyl phthalate, dibutyl phthalate, and bisphenol A) in drinking water at Paraíba do Sul River region and release of these compounds from bottled water. An analytical method employing solid phase extraction and GC/MS was optimized and validated. The results showed that the method is selective, linear (r² > 0.99), precise (RSD <12%), accurate (recoveries between 62 and 105%), sensitive and robust. Applying the method, the presence of all studied pollutants in drinking water was observed for the three sampled plasticizers. These plasticizers were not found in mineral bottled water, before or after storage.
Resumo:
The world's largest ethanol producer (USA) uses corn as feedstock. DDGS (distillers dried grains with solubles) is the main waste generated from this process (around 32 million t/year). DDGS samples were pyrolyzed at 1000 ºC in a furnace with controlled atmosphere. The effluent was channeled to a second furnace, in which catalyst substrates were placed. Chromatographic analysis was used to evaluate the gaseous effluents, showing that the catalyst reduced hydrocarbon emissions. The solid products formed were analyzed by SEM and TEM. Graphitic structures and carbon nanofibers, 50 µm in length and with diameters of 80-200 nm, were formed.
Resumo:
Tebuthiuron (TBH) is a herbicide widely used in different cultures and known for its toxic effects. Electrochemical methods are promising for removing pollutants such as pesticides. This study showed the degradation of TBH using a DSA® anode operated at current densities of 50 to 200 mA cm-2. Removal presented pseudo-first order kinetics while high-pressure liquid chromatography (UV detection) showed two peaks, ascribed to degradation intermediates. The maximum percentage of total organic carbon removed was 12.9%. Ion chromatography revealed that higher concentrations of nitrate and nitrite ions formed with increasing current density.
Resumo:
Emission factors of natural processes and anthropogenic activities were used to estimate nutrients and metal loads for the lower Macaé river basin, which hosts the operational base for the offshore oil and gas exploration in the Campos Basin. The estimates indicated that emissions from anthropogenic activities are higher than natural emissions. Major contributing drivers include husbandry and urbanization, whose effluents receive no treatment. The increasing offshore oil exploration along the Brazilian littoral has resulted in rapid urbanization and, therefore might increase the inshore emission of anthropogenic chemicals in cases where effective residue control measures are not implemented in fluvial basins of the region.
Resumo:
A review of most of the reported studies on the use of iron oxides as catalyst in specific processes, namely Haber-Bosch reaction, Fischer-Tropsch synthesis, Fenton oxidation and photolytic molecular splitting of water to produce gaseous hydrogen, was carried out. An essential overview is thus presented, intending to address the fundamental meaning, as well as the corresponding chemical mechanisms, and perspectives on new technological potentialities of natural and synthetic iron oxides, more specifically hematite (α-Fe2O3), goethite (α-FeOOH), magnetite (Fe3O4) and maghemite (γ-Fe2O3), in heterogeneous catalysis.
Resumo:
This study evaluates the application of an intelligent hybrid system for time-series forecasting of atmospheric pollutant concentration levels. The proposed method consists of an artificial neural network combined with a particle swarm optimization algorithm. The method not only searches relevant time lags for the correct characterization of the time series, but also determines the best neural network architecture. An experimental analysis is performed using four real time series and the results are shown in terms of six performance measures. The experimental results demonstrate that the proposed methodology achieves a fair prediction of the presented pollutant time series by using compact networks.
Resumo:
Enzymatic conversion of gaseous substrates into products in aquo-restricted media, using enzymes or whole cells (free and immobilized) as biocatalysts, constitutes a promising technology for the development of clearer processes. Solid-gas systems offer high production rates for minimal plant sizes, allow important reduction of treated volumes, and permit simplified downstream processes. In this review article, principles and applications of solid-gas biocatalysis are discussed. Comparisons of its advantages and disadvantages with those of the organic- and aqueous-phase reactions are also presented herein.
Resumo:
Photocatalytic materials can minimize atmospheric pollution by decomposing certain organic and inorganic pollutants using sunlight as an energy source. In this paper, the development of a methodology to measure the photocatalytic potential of mortar containing TiO2 nanoparticles is reported. The results indicate that up to 40% of NOx can be degraded by Portland cement mortar containing 30-50% of TiO2, which validates the method developed for evaluating the photocatalytic potential of materials.
Resumo:
The sea surface microlayer (SML), although poorly understood, is important in biogeochemical cycling and sea - air exchanges; it is a source or a sink for a range of pollutants. In this paper, an overview of sampling techniques and the role of SML in biogeochemical cycles and climate is presented. The chemical and biological nature of the ocean surface film and its interaction with atmospheric aerosols are discussed. Special attention is given to organic constituents, gel-like compounds, surfactants, halogenated compounds, and metals. Estimates of air - sea exchange fluxes-with focus on organic carbon, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls-are compiled. In addition, research gaps in the chemical composition of marine aerosols and their relationship with SML are described.
Resumo:
Atmospheric pollutants can have serious impacts on the preservation of São Paulo's tangible cultural heritage. The purpose of this paper is to report the results of a monitoring campaign focussed on particulate matter (PM) that was conducted in three of the most important museums of the São Paulo megacity (Brazil): the Museu de Arqueologia e Etnologia (MAE-USP), the Museu Paulista (MP-USP), and the Pinacoteca do Estado de São Paulo (PE). These museums exhibit indoor PM and black carbon (BC) concentrations consistent with their urban locations and their specific methods for managing the indoor environment.
Resumo:
New techniques for treating wastewater, particularly the removal or degradation of organic pollutants and heavy metals, among other pollutants, have been extensively studied. The use of nanostructured iron oxides as adsorbent and photocatalyst for the removal of these contaminants has proved a promising approach, not only because of their high treatment efficiency, but also for their cost-effectiveness, having the flexibility for in situ and ex situ applications. In this review, we briefly introduced the most used kinds of iron oxide nanoparticles, some synthesis techniques for iron oxide nanostructure formation, their potential benefits in environmental clean-up, and their recent advances and applications in wastewater treatment. These advances range from the direct applications of synthesized nanoparticles as adsorbents for removing toxic contaminants or as catalysts to oxidize and break down noxious contaminants (including bacteria and viruses) in wastewater, to integrating nanoparticles into conventional treatment technologies, such as composite photocatalytic filters (membranes, sand and ceramic) that combine separation technology with photocatalytic activity. Finally, the impact of nanoparticles on the environment and human health is briefly discussed.
Resumo:
Knowing the mercury levels of an environment allows a diverse array of biogeochemical studies into the mercury cycle on a local or global scale. Among matrices commonly evaluated, water remains a challenge for research because its mercury levels can be very low, requiring development of complex analytical protocols. Currently, sample preservation methods, protocols that avoid contamination, and analytical techniques with low detection limits allow analysis of mercury in pristine waters. However, different protocols suggest different methods depending on a range of factors such as the characteristics of water sampled and storage time. In remote areas, such as oceanic and Amazonian regions, sample preservation and transport to a laboratory can be difficult, requiring processing of the water during the sampling expedition and the establishment of a field laboratory. Brazilian research on mercury in water can be limited due to difficulty obtaining reagents, lack of laboratory structure, qualified personnel, and financial support. Considering this complexity for analyzing water, we reviewed methodologies for sampling, preservation, and storage of water samples for analysis of the most commonly evaluated mercury species (dissolved gaseous mercury, reactive mercury, methylmercury and total mercury).
Resumo:
Microemulsions (MEs) are thermodynamically stable systems consisting of nanosized droplets dispersed in a solvent continuous medium (known as pseudo-phase), which is immiscible with the dispersed phase. These systems consist of water, a hydrophobic solvent called "oil," an amphiphile and often, a co-surfactant that is normally a medium chain alcohol. A large number of publications describe the importance of MEs in many branches of chemistry, and there is an intensive search for new applications. In addition, MEs have been applied in many areas, including oil extraction, removal of environmental pollutants from soils and effluents, dissolution of additives in lubricants and cutting oils, cleaning processes, dyeing and textile finishing, as nanoreactors to obtain nanoparticles of metals, semiconductors, superconductors, magnetic and photographic materials, and latex. However, only some studies indicate the potential applications of MEs in food and even fewer evaluate their chemical behavior. Potential applications of MEs in food comprise dissolution of lipophilic additives, stabilization of nutrients and biologically active compounds, using as an antimicrobial agent and to maximize the efficiency of food preservatives. This work consists of a literature review focusing on composition and physical and chemical characteristics of microemulsions. Despite the small number of studies on the subject reported in the literature, we demonstrate some potential applications of MEs in food chemistry.
Resumo:
The complexes of 4-chlorophenoxyacetates of Nd(III), Gd(III) and Ho(III) have been synthesized as polycrystalline hydrated solids, and characterized by elemental analysis, spectroscopy, magnetic studies and also by X-ray diffraction and thermogravimetric measurements. The analysed complexes have the following colours: violet for Nd(III), white for Gd(III) and cream for Ho(III) compounds. The carboxylate groups bind as bidentate chelating (Ho) or bridging ligands (Nd, Gd). On heating to 1173K in air the complexes decompose in several steps. At first, they dehydrate in one step to form anhydrous salts, that next decompose to the oxides of respective metals. The gaseous products of their thermal decomposition in nitrogen were also determined and the magnetic susceptibilites were measured over the temperature range of 76-303K and the magnetic moments were calculated. The results show that 4-chlorophenoxyacetates of Nd(III), Gd(III) and Ho(III) are high-spin complexes with weak ligand fields. The solubility value in water at 293K for analysed 4-chlorophenoxyacetates is in the order of 10-4mol/dm³.
Resumo:
Solid-state Ln-L compounds, where Ln stands for heavy trivalent lanthanides (Tb-Lu) and L is malonate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, TG-FTIR system, elemental analysis and complexometry were used to characterize and to study the thermal behaviour of these compounds. The dehydration of the compounds begins at 303 K and the anhydrous compounds are stable up to 548 K. The results also provided information concerning the ligand's denticity, thermal behaviour and identification of some gaseous products evolved during the thermal decomposition of these compounds.