146 resultados para foamy macrophage
Resumo:
Type-1 (T1R) and Type-2 (T2R) leprosy reactions (LR), which affect up to 50% of leprosy patients, are aggressive inflammatory episodes of sudden onset and highly variable incidence across populations. LR are often diagnosed concurrently with leprosy, but more frequently occur several months after treatment onset. It is not uncommon for leprosy patients to develop recurring reactional episodes; however, they rarely undergo both types of LR. Today, LR are the main cause of permanent disabilities associated with leprosy and represent a major challenge in the clinical management of leprosy patients. Although progress has been made in understanding the immunopathology of LR, the factors that cause a leprosy patient to suffer from LR are largely unknown. Given the impact that ethnic background has on the risk of developing LR, host genetic factors have long been suspected of contributing to LR. Indeed, polymorphisms in seven genes [Toll-like receptors (TLR)1, TLR2, nucleotide-binding oligomerisation domain containing 2, vitamin D receptor, natural resistance-associated macrophage protein 1, C4B and interleukin-6] have been found to be associated with one or more LR outcomes. The identification of host genetic markers with predictive value for LR would have a major impact on nerve damage control in leprosy. In this review, we present the recent advances achieved through genetic studies of LR.
Resumo:
Leprosy is an infectious disease caused by Mycobacterium leprae that affects the skin and nerves, presenting a singular clinical picture. Across the leprosy spectrum, lepromatous leprosy (LL) exhibits a classical hallmark: the presence of a collection of M. leprae-infected foamy macrophages/Schwann cells characterised by their high lipid content. The significance of this foamy aspect in mycobacterial infections has garnered renewed attention in leprosy due to the recent observation that the foamy aspect represents cells enriched in lipid droplets (LD) (also known as lipid bodies). Here, we discuss the contemporary view of LD as highly regulated organelles with key functions in M. leprae persistence in the LL end of the spectrum. The modern methods of studying this ancient disease have contributed to recent findings that describe M. leprae-triggered LD biogenesis and recruitment as effective mycobacterial intracellular strategies for acquiring lipids, sheltering and/or dampening the immune response and favouring bacterial survival, likely representing a fundamental aspect of M. leprae pathogenesis. The multifaceted functions attributed to the LD in leprosy may contribute to the development of new strategies for adjunctive anti-leprosy therapies.
Resumo:
Haematological and cytokine alterations in malaria are a broad and controversial subject in the literature. However, few studies have simultaneously evaluated various cytokines in a single patient group during the acute and convalescent phases of infection. The aim of this study was to sequentially characterise alterations in haematological patters and circulating plasma cytokine and chemokine levels in patients infected with Plasmodium vivax or Plasmodium falciparum from a Brazilian endemic area during the acute and convalescent phases of infection. During the acute phase, thrombocytopaenia, eosinopaenia, lymphopaenia and an increased number of band cells were observed in the majority of the patients. During the convalescent phase, the haematologic parameters returned to normal. During the acute phase, P. vivax and P. falciparum patients had significantly higher interleukin (IL)-6, IL-8, IL-17, interferon-γ, tumour necrosis factor (TNF)-α, macrophage inflammatory protein-1β and granulocyte-colony stimulating factor levels than controls and maintained high levels during the convalescent phase. IL-10 was detected at high concentrations during the acute phase, but returned to normal levels during the convalescent phase. Plasma IL-10 concentration was positively correlated with parasitaemia in P. vivax and P. falciparum-infected patients. The same was true for the TNF-α concentration in P. falciparum-infected patients. Finally, the haematological and cytokine profiles were similar between uncomplicated P. falciparum and P. vivax infections.
Resumo:
Lipid bodies [lipid droplets (LBs)] are lipid-rich organelles involved in lipid metabolism, signalling and inflammation. Recent findings suggest a role for LBs in host response to infection; however, the potential functions of this organelle in Toxoplasma gondii infection and how it alters macrophage microbicidal capacity during infection are not well understood. Here, we investigated the role of host LBs in T. gondii infection in mouse peritoneal macrophages in vitro. Macrophages cultured with mouse serum (MS) had higher numbers of LBs than those cultured in foetal bovine serum and can function as a model to study the role of LBs during intracellular pathogen infection. LBs were found in association with the parasitophorous vacuole, suggesting that T. gondii may benefit from this lipid source. Moreover, increased numbers of macrophage LBs correlated with high prostaglandin E2 (PGE2) production and decreased nitric oxide (NO) synthesis. Accordingly, LB-enriched macrophages cultured with MS were less efficient at controlling T. gondii growth. Treatment of macrophages cultured with MS with indomethacin, an inhibitor of PGE2 production, increased the microbicidal capacity against T. gondii. Collectively, these results suggest that culture with MS caused a decrease in microbicidal activity of macrophages against T. gondii by increasing PGE2 while lowering NO production.
Resumo:
In our previous study, we have found that 5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]-pyrimidin-4-ylamine (BAY 41-2272), a guanylate cyclase agonist, activates human monocytes and the THP-1 cell line to produce the superoxide anion, increasing in vitro microbicidal activity, suggesting that this drug can be used to modulate immune functioning in primary immunodeficiency patients. In the present work, we investigated the potential of the in vivo administration of BAY 41-2272 for the treatment of Candida albicans and Staphylococcus aureus infections introduced via intraperitoneal and subcutaneous inoculation. We found that intraperitoneal treatment with BAY 41-2272 markedly increased macrophage-dependent cell influx to the peritoneum in addition to macrophage functions, such as spreading, zymosan particle phagocytosis and nitric oxide and phorbol myristate acetate-stimulated hydrogen peroxide production. Treatment with BAY 41-2272 was highly effective in reducing the death rate due to intraperitoneal inoculation of C. albicans, but not S. aureus. However, we found that in vitro stimulation of peritoneal macrophages with BAY 41-2272 markedly increased microbicidal activities against both pathogens. Our results show that the prevention of death by the treatment of C. albicans-infected mice with BAY 41-2272 might occur primarily by the modulation of the host immune response through macrophage activation.
Resumo:
We determined the serum IgE levels and T-helper (Th)17-related cytokines during distinct hepatitis A virus (HAV)-induced clinical courses in children. A significantly higher concentration of macrophage inflammatory protein 3α, interleukin (IL)-17E and IL-17F in HAV-infected children with intermediate liver injury compared with those with minor liver damage was found. A reduction in the IgE levels in those patients who showed the highest levels of IL-17F in the group of intermediate liver injury was found. The data suggested that the Th17-related profile is associated with the severity of HAV infection and might play a role on the modulation achieved by HAV during allergies.
Resumo:
Tuberculosis has great public health impact with high rates of mortality and the only prophylactic measure for it is the Mycobacterium bovisbacillus Calmette-Guérin (BCG) vaccine. The present study evaluated the release of cytokines [interleukin (IL)-1, tumour necrosis factor and IL-6] and chemokines [macrophage inflammatory protein (MIP)-1α and MIP-1β] by THP-1 derived macrophages infected with BCG vaccine obtained by growing mycobacteria in Viscondessa de Moraes Institute medium medium (oral) or Sauton medium (intradermic) to compare the effects of live and heat-killed (HK) mycobacteria. Because BCG has been reported to lose viability during the lyophilisation process and during storage, we examined whether exposing BCG to different temperatures also triggers differences in the expression of some important cytokines and chemokines of the immune response. Interestingly, we observed that HK mycobacteria stimulated cytokine and chemokine production in a different pattern from that observed with live mycobacteria.
Resumo:
Natural resistance-associated macrophage protein 1/solute carrier family 11 member 1 gene (Nramp1/Slc11a1) is a gene that controls the susceptibility of inbred mice to intracellular pathogens. Polymorphisms in the human Slc11a1/Nramp1 gene have been associated with host susceptibility to leprosy. This study has evaluated nine polymorphisms of the Slc11a1/Nramp1 gene [(GT)n, 274C/T, 469+14G/C, 577-18G/A, 823C/T, 1029 C/T, 1465-85G/A, 1703G/A, and 1729+55del4] in 86 leprosy patients (67 and 19 patients had the multibacillary and the paucibacillary clinical forms of the disease, respectively), and 239 healthy controls matched by age, gender, and ethnicity. The frequency of allele 2 of the (GT)n polymorphism was higher in leprosy patients [p = 0.04, odds ratio (OR) = 1.49], whereas the frequency of allele 3 was higher in the control group (p = 0.03; OR = 0.66). Patients carrying the 274T allele (p = 0.04; OR = 1.49) and TT homozygosis (p = 0.02; OR = 2.46), such as the 469+14C allele (p = 0.03; OR = 1.53) of the 274C/T and 469+14G/C polymorphisms, respectively, were more frequent in the leprosy group. The leprosy and control groups had similar frequency of the 577-18G/A, 823C/T, 1029C/T, 1465-85G/A, 1703G/A, and 1729+55del4 polymorphisms. The 274C/T polymorphism in exon 3 and the 469+14G/C polymorphism in intron 4 were associated with susceptibility to leprosy, while the allele 2 and 3 of the (GT)n polymorphism in the promoter region were associated with susceptibility and protection to leprosy, respectively.
Resumo:
The objective of this work was to evaluate the effect of food supplementation with vitamin C on macrophage and multinucleated giant cell (MGC) activities of pacus at two stocking densities. The experiment was carried out in a 2x2x3 split-plot factorial arrangement with: 0 and 500 mg kg-1 vitamin C; 5 and 20 kg m-3 stocking densities; and evaluation times at 3, 6, and 12 days after the subcutaneous implantation of glass coverslips (DPI). The number of macrophages and MGC, as well as cortisol and glucose plasma levels were determined. The number of macrophages and MGC with two to five nuclei was significantly greater in fish supplemented with vitamin C at 5 kg m-3 stocking density at 3 DPI in comparison to nonsupplemented ones. The macrophage and MGC counts were lower in fish with high-plasma cortisol concentration. Supplementation with 500 mg vitamin C benefits macrophage activity on foreign-body inflammation, and high-cortisol concentration has suppressive effects on this response.
Resumo:
The objective of this work was to investigate the effect of dietary supplementation with essential fatty acids on the kinetics of macrophage accumulation and giant cell formation in Nile tilapia (Oreochromis niloticus). The supplementation sources were soybean oil (SO, source of omega 6, n‑6) and linseed oil (LO, source of omega 3, n‑3), in the following proportions: 100% SO; 75% SO + 25% LO; 50% SO + 50% LO; 25% SO + 75% LO; and 100% LO (four replicates per treatment). After a feeding period of three months, growth performance was evaluated, and glass coverslips were implanted into the subcutaneous connective tissue of fish, being removed for examination at 2, 4, 6, and 8 days after implantation. Growth performance did not differ between treatments. Fish fed 100% linseed oil diet had the greatest macrophage accumulation and the fastest Langhans cell formation on the sixth day. On the eighth day, Langhans cells were predominant on the coverslips implanted in the fish feed 75 and 100% linseed oil. n‑3 fatty acids may contribute to macrophage recruitment and giant cell formation in fish chronic inflammatory response to foreign body.
Resumo:
The immune responses are mediated by a variety of cells that, when activated, produce a number of molecules. Macrophages are the first cells to take part in the immune response releasing many compounds in the extracellular environment such as H2O2. Taking into account this aspect we evaluated the activation of an immunological system, in vitro, by determining the H2O2 released in cultures of peritoneal macrophage cells from Swiss mice in the presence of organopalladated compounds of the type [Pd(dmba)(X)(dppp)], dmba = N,N-dimethylbenzylamine, dppp = 1,3-bis(diphenylphosphine)propane, X = Cl, N3, NCO, NCS. An excellent activation of macrophages by the [Pd(dmba)(X)(dppp)] compounds was observed and the influence of the X ligand on the immune response could be verified.
Resumo:
An outbreak of hepatogenous photosensitization is reported in a flock of 28 sheep grazing Brachiaria decumbens in Mato Grosso do Sul State, Central-Western Brazil. Seven lambs and an adult sheep were affected and 6 of them died. Two surviving affected lambs and one lamb without clinical signs had increased serum values of gamma glutamyltransferase, bilirubin, and cholesterol. In two adult unaffected sheep those parameters were within normal values. An adult sheep submitted to necropsy presented moderate body condition, unilateral corneal opacity, drying of the muzzle, moderate jaundice, increased lobular pattern of the liver, and a distended gallbladder. Histological lesions were epithelial degeneration, necrosis, and hyperplasia of small bile ducts. Mild amounts of foamy macrophages were observed, mainly in the centroacinar zone. Diffuse swelling and vacuolation were observed in hepatocytes. Crystal negative images were found within bile ducts, foamy macrophages, and the lumen of some renal tubules. The heart showed multifocal areas of degeneration and necrosis of the muscle fibers. Pasture samples (Brachiaria decumbens) contained 2.36% of protodioscin. No Pithomyces chartarum spores were found in the pasture. Samples from a similar neighboring B. decumbens pasture grazed by cattle without photosensitization contained 1.63% of protodioscin isomers. Outbreaks of photosensitization caused by Brachiaria spp. are common in cattle in the Brazilian Cerrado (savanna) with about 51 million hectares of Brachiaria spp pastures. Sheep farming has been recently developed in this region, and the number of sheep is increasing significantly. Because sheep are more susceptible than cattle to lithogenic saponins, poisoning by Brachiaria should be an important limiting factor for the sheep industry.
Resumo:
Brachiaria species are the most important grasses for cattle production in Brazil. However, a limiting factor for the use of Brachiaria spp. is their toxicity. Most outbreaks of hepatogenous photosensitization are caused by B. decumbens; however B. brizantha, B. humidicola and B. ruziziensis can also cause poisoning. The poisoning affects cattle, sheep, goats and buffalo. Sheep are more susceptible than other animal species and the young are more susceptible than adults. There are differences in susceptibility among animals of the same species and it has been suggested that this resistance is genetic. Also has been suggested that buffalo and probably some sheep are resilient, i.e. when poisoned these animals have histologic lesions and high GGT serum concentrations, but do not show clinical signs. In general, saponin concentrations are higher in growing plants, but outbreaks occur all over the year, probably due to unexplained rise in saponin concentration in the plant. A clinical syndrome of progressive weight loss and death, without photosensitization, has been reported in cattle poisoned by B. decumbens. Main preventive measures are based on the selection of resistant or resilient animals and on the development of Brachiaria species or varieties with low saponin concentration.
Resumo:
Aiming to provide insight and discussing the problems related to the diagnosis and differential diagnosis of canine transmissible venereal tumor (CTVT), especially in its extragenital form, immunohistochemical evaluation was performed and a comparison was established by analysis of the microscopic appearance of 10 genital CTVTs and 13 exclusively extragenital CTVTs previously diagnosed by cytology and histopathology. CTVTs samples were incubated with biotinylated antibodies raised against specific membrane (anti-macrophage) and cytoplasmic antigens (anti-lysozyme, anti-S-100 protein, anti-vimentin and anti-CD18) and subsequently developed using streptavidin-biotin peroxidase and streptavidin-biotin-alkaline phosphatase methods. A strong reactivity with the anti-vimentin antibody was found in 100% of the tumors tested (22/22). No reactivity was found for the anti-lysozyme, anti-macrophage, anti-S-100 protein and anti-CD18. No histopathological or immunoreactivity differences between genital and extragenital CTVTs were found. These findings do not corroborate the hypothesis of histiocytic origin of CTVT (no reactivity to anti-lysozyme, anti-macrophage and anti-CD 18 antibodies). In addition, the antibody panel used is useful to narrow the differential diagnosis for lymphomas, histiocytic tumors, amelanotic melanomas, and poorly differentiated epithelial neoplasias, among others.
Resumo:
Giardia lamblia trophozoites were incubated for 2 h with activated murine macrophages, nitric oxide (NO) donors or a superoxide anion generator (20 mU/ml xanthine oxidase plus 1 mM xanthine). Activated macrophages were cytotoxic to Giardia trophozoites (~60% dead trophozoites). This effect was inhibited (>90%) by an NO synthase inhibitor (200 µM) and unaffected by superoxide dismutase (SOD, 300 U/ml). Giardia trophozoites were killed by the NO donors, S-nitroso-acetyl-penicillamine (SNAP) and sodium nitroprusside (SNP) in a dose-dependent manner (LD50 300 and 50 µM, respectively). A dual NO-superoxide anion donor, 3-morpholino-sydnonimine hydrochloride (SIN-1), did not have a killing effect in concentrations up to 1 mM. However, when SOD (300 U/ml) was added simultaneously with SIN-1 to Giardia, a significant trophozoite-killing effect was observed (~35% dead trophozoites at 1 mM). The mixture of SNAP or SNP with superoxide anion, which yields peroxynitrite, abolished the trophozoite killing induced by NO donors. Authentic peroxynitrite only killed trophozoites at very high concentrations (3 mM). These results indicate that NO accounts for Giardia trophozoite killing and this effect is not mediated by peroxynitrite