99 resultados para erythrocyte membrane cytoskeleton


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium has been used for the last five decades to treat bipolar disorder, but the molecular basis of its therapeutic effect is unknown. Phosphoglucomutase is a key enzyme in the metabolism of glycogen. In yeast, rabbit and human HEK293 cells, it is inhibited by lithium in the therapeutic concentration range. We measured the phosphoglucomutase activity in erythrocytes and the inhibitor constant for lithium in a population of healthy subjects and compared them to those of bipolar patients treated with lithium or carbamazepine. The specific activity of phosphoglucomutase measured in vitro in erythrocytes from control subjects presented a normal distribution, with the difference between the lowest and the highest activity being approximately 2-fold (0.53-1.10 nmol mg Hb-1 min-1). Comparison of phosphoglucomutase activity in untreated bipolar patients and control subjects showed no significant difference, whereas comparison between bipolar patients treated with carbamazepine or lithium revealed significantly lower mean values in patients treated with carbamazepine (747.3 ± 27.6 vs 879.5 ± 35.9 pmol mg Hb-1 min-1, respectively). When we studied the concentration of lithium needed to inhibit phosphoglucomutase activity by 50%, a bimodal distribution among the population tested was obtained. The concentration of LiCl needed to inhibit phosphoglucomutase activity by 50% was 0.35 to 1.8 mM in one group of subjects and in the other it was 3 to 4 mM. These results suggest that phosphoglucomutase activity may be significant in patients with bipolar disorder treated with lithium and carbamazepine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Streptococcus mutans membrane-bound P- and F-type ATPases are responsible for H+ extrusion from the cytoplasm thus keeping intracellular pH appropriate for cell metabolism. Toluene-permeabilized bacterial cells have long been used to study total membrane-bound ATPase activity, and to compare the properties of ATPase in situ with those in membrane-rich fractions. The aim of the present research was to determine if toluene permeabilization can significantly modify the activity of membrane-bound ATPase of both F-type and P-type. ATPase activity was assayed discontinuously by measuring phosphate release from ATP as substrate. Treatment of S. mutans membrane fractions with toluene reduced total ATPase activity by approximately 80% and did not allow differentiation between F- and P-type ATPase activities by use of the standard inhibitors vanadate (3 µM) and oligomycin (4 µg/mL). Transmission electron microscopy shows that, after S. mutans cells permeabilization with toluene, bacterial cell wall and plasma membrane are severely injured, causing cytoplasmic leakage. As a consequence, loss of cell viability and disruption of H+ extrusion were observed. These data suggest that treatment of S. mutans with toluene is an efficient method for cell disruption, but care should be taken in the interpretation of ATPase activity when toluene-permeabilized cells are used, because results may not reflect the real P- and F-type ATPase activities present in intact cell membranes. The mild conditions used for the preparation of membrane fractions may be more suitable to study specific ATPase activity in the presence of biological agents, since this method preserves ATPase selectivity for standard inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chaperone members of the protein disulfide isomerase family can catalyze the thiol-disulfide exchange reaction with pairs of cysteines. There are 14 protein disulfide isomerase family members, but the ability to catalyze a thiol disulfide exchange reaction has not been demonstrated for all of them. Human endoplasmic reticulum protein chaperone thio-oxidoreductase (ERp18) shows partial oxidative activity as a protein disulfide isomerase. The aim of the present study was to evaluate the participation of ERp18 in gonadotropin-releasing hormone receptor (GnRHR) expression at the plasma membrane. Cos-7 cells were cultured, plated, and transfected with 25 ng (unless indicated) wild-type human GnRHR (hGnRHR) or mutant GnRHR (Cys14Ala and Cys200Ala) and pcDNA3.1 without insert (empty vector) or ERp18 cDNA (75 ng/well), pre-loaded for 18 h with 1 µCi myo-[2-3H(N)]-inositol in 0.25 mL DMEM and treated for 2 h with buserelin. We observed a decrease in maximal inositol phosphate (IP) production in response to buserelin in the cells co-transfected with hGnRHR, and a decrease from 20 to 75 ng of ERp18 compared with cells co-transfected with hGnRHR and empty vector. The decrease in maximal IP was proportional to the amount of ERp18 DNA over the range examined. Mutants (Cys14Ala and Cys200Ala) that could not form the Cys14-Cys200 bridge essential for plasma membrane routing of the hGnRHR did not modify maximal IP production when they were co-transfected with ERp18. These results suggest that ERp18 has a reduction role on disulfide bonds in wild-type hGnRHR folding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our aim was to construct a recombinant adenovirus co-expressing truncated human prostate-specific membrane antigen (tPSMA) and mouse 4-1BBL genes and to determine its effect on dendritic cells (DCs) generated from bone marrow suspensions harvested from C57BL/6 mice for which the effect of 4-1BBL on DCs is not clear, especially during DCs processing tumor-associated antigen. Replication deficient adenovirus AdMaxTM Expression System was used to construct recombinant adenovirus Ad-tPSMA-internal ribosome entry site-mouse 4-1BBL (Ad-tPSMA-IRES-m4-1BBL) and Ad-enhanced green fluorescent protein. Day 7 proliferating DC aggregates generated from C57BL/6 mice were collected as immature DCs and further mature DCs were obtained by lipopolysaccharide activated immature DCs. After DCs were exposed to the recombinant adenovirus with 250 multiplicity of infection, the expression of tPSMA and m4-1BBL proteins were detected by Western blot, and the apoptosis and phenotype of DCs were analyzed by flow cytometry. Cytokines (IL-6 and IL-12) in the supernatant were detected by enzyme-linked immunosorbent assay (ELISA). Proliferation of T cells was detected by allogeneic mixed lymphocyte reactions. The tPSMA and m4-1BBL proteins were expressed correctly. The apoptosis rate of DCs transfected with Ad-tPSMA-IRES-m4-1BBL was 14.6%, lower than that of control DCs. The expression of co-stimulatory molecules [CD80 (81.6 ± 5.4%) and CD86 (80.13 ± 2.81%)] up-regulated in Ad-tPSMA-IRES-m4-1BBL-pulsed DCs, and the level of IL-6 (3960.2 ± 50.54 pg/mL) and IL-12 (249.57 ± 12.51 pg/mL) production in Ad-tPSMA-IRES-m4-1BBL-transduced DCs were significantly higher (P < 0.05) than those in control DCs. Ad-tPSMA-IRES-m4-1BBL induced higher T-cell proliferation (OD450 = 0.614 ± 0.018), indicating that this recombinant adenovirus can effectively enhance the activity of DCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basic fibroblast growth factor (bFGF) regulates skin wound healing; however, the underlying mechanism remains to be defined. In the present study, we determined the effects of bFGF on the regulation of cell growth as well as collagen and fibronectin expression in fibroblasts from normal human skin and from hypertrophic scars. We then explored the involvement of mitochondria in mediating bFGF-inducedeffects on the fibroblasts. We isolated and cultivated normal and hypertrophic scar fibroblasts from tissue biopsies of patients who underwent plastic surgery for repairing hypertrophic scars. The fibroblasts were then treated with different concentrations of bFGF (ranging from 0.1 to 1000 ng/mL). The growth of hypertrophic scar fibroblasts became slower with selective inhibition of type I collagen production after exposure to bFGF. However, type III collagen expression was affected in both normal and hypertrophic scar fibroblasts. Moreover, fibronectin expression in the normal fibroblasts was up-regulated after bFGF treatment. bFGF (1000 ng/mL) also induced mitochondrial depolarization in hypertrophic scar fibroblasts (P < 0.01). The cellular ATP level decreased in hypertrophic scar fibroblasts (P < 0.05), while it increased in the normal fibroblasts following treatment with bFGF (P < 0.01). These data suggest that bFGF has differential effects and mechanisms on fibroblasts of the normal skin and hypertrophic scars, indicating that bFGF may play a role in the early phase of skin wound healing and post-burn scar formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The actions of thyroid hormone (TH) on pancreatic beta cells have not been thoroughly explored, with current knowledge being limited to the modulation of insulin secretion in response to glucose, and beta cell viability by regulation of pro-mitotic and pro-apoptotic factors. Therefore, the effects of TH on proinsulin gene expression are not known. This led us to measure: a) proinsulin mRNA expression, b) proinsulin transcripts and eEF1A protein binding to the actin cytoskeleton, c) actin cytoskeleton arrangement, and d) proinsulin mRNA poly(A) tail length modulation in INS-1E cells cultured in different media containing: i) normal fetal bovine serum - FBS (control); ii) normal FBS plus 1 µM or 10 nM T3, for 12 h, and iii) FBS depleted of TH for 24 h (Tx). A decrease in proinsulin mRNA content and attachment to the cytoskeleton were observed in hypothyroid (Tx) beta cells. The amount of eEF1A protein anchored to the cytoskeleton was also reduced in hypothyroidism, and it is worth mentioning that eEF1A is essential to attach transcripts to the cytoskeleton, which might modulate their stability and rate of translation. Proinsulin poly(A) tail length and cytoskeleton arrangement remained unchanged in hypothyroidism. T3 treatment of control cells for 12 h did not induce any changes in the parameters studied. The data indicate that TH is important for proinsulin mRNA expression and translation, since its total amount and attachment to the cytoskeleton are decreased in hypothyroid beta cells, providing evidence that effects of TH on carbohydrate metabolism also include the control of proinsulin gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transient receptor potential channels family (TRP channels) is a relatively new group of cation channels that modulate a large range of physiological mechanisms. In the nervous system, the functions of TRP channels have been associated with thermosensation, pain transduction, neurotransmitter release, and redox signaling, among others. However, they have also been extensively correlated with the pathogenesis of several innate and acquired diseases. On the other hand, the omega-3 polyunsaturated fatty acids (n-3 fatty acids) have also been associated with several processes that seem to counterbalance or to contribute to the function of several TRPs. In this short review, we discuss some of the remarkable new findings in this field. We also review the possible roles played by n-3 fatty acids in cell signaling that can both control or be controlled by TRP channels in neurodegenerative processes, as well as both the direct and indirect actions of n-3 fatty acids on TRP channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reports remain insufficient on whether and how prostate-specific membrane antigen (PSMA) can influence in vivo osseous metastasis of prostate cancer (PCa). In the present study, the authors induced stable expression of PSMA in mouse PCa cell line RM-1. In vivo osseous metastasis was induced in 37 6-week-old female C57BL/6 mice weighing 22.45 ± 0.456 g. RM-1 cells were actively injected into the femoral bone cavity, leading to bilateral dissymmetry of bone density in the femoral bone. Tumor cells were also detected in bone tissue by pathological examination. The impact on bone density was demonstrated by the significant difference between animals injected with RM-PSMA cells (0.0738 ± 0.0185 g/cm²) and animals injected with RM-empty plasmid cells (0.0895 ± 0.0241 g/cm²). The lytic bone lesion of the RM-PSMA group (68.4%) was higher than that of the control group (27.8%). Immunohistochemistry showed that the expression of both vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) was distinctly higher in the RM-PSMA group than in the control group, while ELISA and Western blot assay indicated that VEGF and MMP-9 were higher in the RM-PSMA group compared to the control group (in vitro). Thus, the present study proposed and then confirmed for the first time that PSMA can promote in vivo osseous metastasis of PCa by increasing sclerotic destruction of PCa cells. Further analyses also suggested that PSMA functions positively on the invasive ability of RM-1 by increasing the expression of MMP-9 and VEGF by osseous metastases in vivo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The P1.HTR cell line includes highly transfectable cells derived from P815 mastocytoma cells originating from mouse breast tissue. Despite its widespread use in immunogenic studies, no data are available about the behavior of P1.HTR cells in the chick embryo chorioallantoic membrane model. The objective of the present investigation was to study the effects of P1.HTR cells implanted on the chorioallantoic membrane of chick embryos. We inoculated P1.HTR cells into the previously prepared chick embryo chorioallantoic membrane and observed the early and late effects of these cells by stereomicroscopy, histochemistry and immunohistochemistry. A highly angiotropic and angiogenic effect occurred early after inoculation and a tumorigenic potential with the development of mastocytoma keeping well mast cells immunophenotype was detected later during the development. The P1.HTR mastocytoma cell line is a good tool for the development of the chick embryo chorioallantoic membrane mastocytoma model and also for other studies concerning the involvement of blood vessels. The chick embryo chorioallantoic membrane model of mastocytoma retains the mast cell immunophenotype under experimental conditions and could be used as an experimental tool for in vivo preliminary testing of antitumor and antivascular drugs.