219 resultados para coffee crop phytometry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animal manure is applied to the soil as a nutrient source, especially of nitrogen, to plants. However, manure application rates can be reduced with the use of N fertilizer in topdressing. The aim of this study was to evaluate crop responses to different application rates of animal manure sources, used alone and supplemented with mineral N topdressing, in a no-tillage system. The study was carried out from 2005 to 2008 on a Hapludalf soil. The treatments consisted of rates of 10, 20 and 30 m³ ha-1 of pig slurry (PS), and of 1 and 2 t ha-1 of turkey manure (TM), applied alone and supplemented with topdressed N fertilizer (TNF), as well as two controls, mineral fertilization (NPK) and one control without fertilizer application. Grain yield in common bean and maize, and dry matter yield and nutrient accumulation in common bean, maize and black oat crops were evaluated. Nitrogen application in topdressing in maize and common bean, especially when PS was used at rates of 20 and 30 m³ ha-1, and TM, at 2 t ha-1, proved effective in increasing the crop grain yields, showing the viability of the combined use of organic and industrialized mineral sources. Nitrogen accumulation in maize and common bean tissues was the indicator most strongly related to grain yield, in contrast with the apparent nutrient recovery, which was not related to the N, P and K quantities applied in the organic sources. No clear residual effect of N topdressing of maize and common bean was observed on the dry matter yield of black oat grown in succession to the main crops with PS and TM applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of potassium (K) rock powder can be an alternative for K supply of crops. Thus, to reduce K fertilizer imports from abroad, possibilities of extracting this nutrient from Brazilian rocks are being studied. The objective was to evaluate the effect of phonolite rock powder (F2) as K source (Ekosil®) on the air-dried fruit yield, nutrition and macronutrient export of Arabica coffee. The experiment was carried out on a dystroferric Red Latosol (Typic Haplorthox), in Piraju, São Paulo State, Brazil, in the 2008/09 and 2009/10 growing seasons. The experimental design was a randomized complete block, in a factorial 2 × 3 + 1 arrangement, with four replications. The treatments consisted of two K sources (KCl - 58 % of K2O and F2 - 8.42 % K2O) and three rates ½-, 1-, and 2-fold the K2O rate recommended for coffee, i.e., 75, 150, and 300 kg ha-1 of K2O), plus a control (without K application). Potassium supply increased coffee yield, regardless of the source. Application of source F2 increased coffee yield similarly to KCl at the recommended K rate for coffee (150 kg ha-1 K2O), proving efficient as K supply for coffee. Potassium application increased macronutrient export in coffee, especially in the growing season with higher yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agricultural production systems that include the production of mulch for no-tillage farming and structural improvement of the soil can be considered key measures for agricultural activity in the Cerrado region without causing environmental degradation. In this respect, our work aimed to evaluate the chemical and physical-hydric properties of a dystrophic Red Latosol (Oxisol) in the municipality of Rio Verde, Goias, Brazil, under different soil management systems in the between-crop season of soybean cultivation five years after first planting. The following conditions were evaluated: Brachiaria brizantha cv. Marandu as a cover crop during the between-crop season; Second crop of maize intercropped with Brachiaria ruziziensis; Second crop of grain alone in a no-tillage system; Fallow soil after the soybean harvest; and Forest (natural vegetation) located in an adjacent area. Soil samples up to a depth of 40 cm were taken and used in the assessment of chemical properties and soil structure diagnostics. The results demonstrated that the conversion of native vegetation areas into agricultural fields altered the chemical and physical-hydric properties of the soil at all the depths evaluated, especially up to 10 cm, due to the activity of root systems in the soil structure. Cultivation of B. brizantha as a cover crop during the summer between-crop season increased soil water availability, which is important for agricultural activities in the region under study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies testing the High Energy Moisture Characteristic (HEMC) technique in tropical soils are still incipient. By this method, the effects of different management systems can be evaluated. This study investigated the aggregation state of an Oxisol under coffee with Brachiaria between crop rows and surface-applied gypsum rates using HEMC. Soil in an experimental area in the Upper São Francisco region, Minas Gerais, was studied at depths of 0.05 and 0.20 m in coffee rows. The treatments consisted of 0, 7, and 28 Mg ha-1 of agricultural gypsum rates distributed on the soil surface of the coffee rows, between which Brachiaria was grown and periodically cut, and compared with a treatment without Brachiaria between coffee rows and no gypsum application. To determine the aggregation state using the HEMC method, soil aggregates were placed in a Büchner funnel (500 mL) and wetted using a peristaltic pump with a volumetric syringe. The wetting was applied increasingly at two pre-set speeds: slow (2 mm h-1) and fast (100 mm h-1). Once saturated, the aggregates were exposed to a gradually increasing tension by the displacement of a water column (varying from 0 to 30 cm) to obtain the moisture retention curve [M = f (Ψ) ], underlying the calculation of the stability parameters: modal suction, volume of drainable pores (VDP), stability index (slow and fast), VDP ratio, and stability ratio. The HEMC method conferred sensitivity in quantifying the aggregate stability parameters, and independent of whether gypsum was used, the soil managed with Brachiaria between the coffee rows, with regular cuts discharged in the crop row direction, exhibited a decreased susceptibility to disaggregation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrated crop-livestock systems (ICLs) are a viable strategy for the recovery and maintenance of soil characteristics. In the present study, an ICL experiment was conducted by the Instituto Agronômico do Paraná in the municipality of Xambre, Parana (PR), Brazil, to evaluate the effects of various grazing intensities. The objective of the present study was to quantify the levels of microbial biomass carbon (MBC) and soil enzymatic activity in an ICL of soybean (summer) and Brachiaria ruziziensis (winter), with B. ruziziensis subjected to various grazing intensities. Treatments consisted of varying pasture heights and grazing intensities (GI): 10, 20, 30, and 40 cm (GI-10, GI-20, GI-30, and GI-40, respectively) and a no grazing (NG) control. The microbial characteristics analysed were MBC, microbial respiration (MR), metabolic quotient (qCO2), the activities of acid phosphatase, β-glucosidase, arylsuphatase, and cellulase, and fluorescein diacetate (FDA) hydrolysis. Following the second grazing cycle, the GI-20 treatment (20-cm - moderate) grazing intensity) contained the highest MBC concentrations and lowest qCO2 concentrations. Following the second soybean cycle, the treatment with the highest grazing intensity (GI-10) contained the lowest MBC concentration. Soil MBC concentrations in the pasture were favoured by the introduction of animals to the system. High grazing intensity (10-cm pasture height) during the pasture cycle may cause a decrease in soil MBC and have a negative effect on the microbial biomass during the succeeding crop. Of all the enzymes analyzed, only arylsuphatase and cellulase activities were altered by ICL management, with differences between the moderate grazing intensity (GI-20) and no grazing (NG) treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil management, in terms of tillage and cropping systems, strongly influences the biological properties of soil involved in the suppression of plant diseases. Fungistasis mediated by soil microbiota is an important component of disease-suppressive soils. We evaluated the influence of different management systems on fungistasis against Fusarium graminearum, the relationship of fungistasis to the bacterial profile of the soil, and the possible mechanisms involved in this process. Samples were taken from a long-term experiment set up in a Paleudult soil under conventional tillage or no-tillage management and three cropping systems: black oat (Avena strigose L.) + vetch (Vicia sativa L.)/maize (Zea mays L.) + cowpea (Vigna sinensis L.), black oat/maize, and vetch/maize. Soil fungistasis was evaluated in terms of reduction of radial growth of F. graminearum, and bacterial diversity was assessed using ribosomal intergenic spacer analysis (RISA). A total of 120 bacterial isolates were obtained and evaluated for antibiosis, and production of volatile compounds and siderophores. No-tillage soil samples showed the highest level of F. graminearum fungistasis by sharply reducing the development of this pathogen. Of the cropping systems tested, the vetch + black oat/maize + cowpea system showed the highest fungistasis and the oat/maize system showed the lowest. The management system also affected the genetic profile of the bacteria isolated, with the systems from fungistatic soils showing greater similarity. Although there was no clear relationship between soil management and the characteristics of the bacterial isolates, we may conclude that antibiosis and the production of siderophores were the main mechanisms accounting for fungistasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Farmers must carefully choose the cultivar to be grown for a successful carrot crop. The yield potential of the cultivar may influence nutrient demand and should be known to plan for fertilization application. The aim of this study was to evaluate the cultivar effect on carrot yield and on the nutrient content and quantities allocated to leaves and roots. Three experiments were set up in two crop seasons in Rio Paranaíba, MG, Brazil. In the first season, typical summer, 10 summer cultivars were sown. In the second season, summer-winter (transition), two experiments were set up, one with summer cultivars and the other with winter cultivars. The treatments consisted of the carrot cultivars distributed in randomized blocks with four replications. Fresh and dry matter of the roots and leaves was quantified. Yield was calculated based on fresh matter of the roots. The nutrient content in leaves and roots was determined at the time of harvest. These contents and the dry matter production of roots and leaves were used to calculate nutrient uptake and export. The greatest average for total and commercial yield occurred in the crop under summer conditions. Extraction of N and K for most of the cultivars in the three experiments went beyond the amounts applied through fertilizers. Thus, there was contribution of nutrients from the soil to obtain the yields observed. However, the amount of P taken up was considerably less than that applied. This implies that soil P fertility will increase after cropping. The crop season and the cultivars influenced yield, nutrient content in the leaves and roots, and extraction and export of nutrients by the carrot crop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil aggregation and the distribution of total organic carbon (TOC) may be affected by soil tillage and cover crops. The objective of this study was to determine the effects of crop rotation with cover crops on soil aggregation, TOC concentration in the soil aggregate fractions, and soil bulk density under a no-tillage system (NTS) and conventional tillage system (CTS, one plowing and two disking). This was a three-year study with cover crop/rice/cover crop/rice rotations in the Brazilian Cerrado. A randomized block experimental design with six treatments and three replications was used. The cover crops (treatments) were: fallow, Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and millet (Pennisetum glaucum). An additional treatment, fallow plus CTS, was included as a control. Soil samples were collected at the depths of 0.00-0.05 m, 0.05-0.10 m, and 0.10-0.20 m after the second rice harvest. The treatments under the NTS led to greater stability in the soil aggregates (ranging from 86.33 to 95.37 %) than fallow plus CTS (ranging from 74.62 to 85.94 %). Fallow plus CTS showed the highest number of aggregates smaller than 2 mm. The cover crops affected soil bulk density differently, and the millet treatment in the NTS had the lowest values. The cover crops without incorporation provided the greatest accumulation of TOC in the soil surface layers. The TOC concentration was positively correlated with the aggregate stability index in all layers and negatively correlated with bulk density in the 0.00-0.10 m layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many forested areas have been converted to intensive agricultural use to satisfy food, fiber, and forage production for a growing world population. There is great interest in evaluating forest conversion to cultivated land because this conversion adversely affects several soil properties. We examined soil microbial, physical, and chemical properties in an Oxisol (Latossolo Vermelho distrófico) of southern Brazil 24 years after forest conversion to a perennial crop with coffee or annual grain crops (maize and soybeans) in conventional tillage or no-tillage. One goal was to determine which soil quality parameters seemed most sensitive to change. A second goal was to test the hypothesis that no-tillage optimized preservation of soil quality indicators in annual cropping systems on converted land. Land use significantly affected microbial biomass and its activity, C and N mineralization, and aggregate stability by depth. Cultivated sites had lower microbial biomass and mineralizable C and N than a forest used as control. The forest and no-tillage sites had higher microbial biomass and mineralizable C and N than the conventional tillage site, and the metabolic quotient was 65 and 43 % lower, respectively. Multivariate analysis of soil microbial properties showed a clear separation among treatments, displaying a gradient from conventional tillage to forest. Although the soil at the coffee site was less disturbed and had a high organic C content, the microbial activity was low, probably due to greater soil acidity and Al toxicity. Under annual cropping, microbial activity in no-tillage was double that of the conventional tillage management. The greater microbial activity in forest and no-tillage sites may be attributed, at least partially, to lower soil disturbance. Reducing soil disturbance is important for soil C sequestration and microbial activity, although control of soil pH and Al toxicity are also essential to maintain the soil microbial activity high.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Perennial forage crops used in crop-livestock integration (CLI) are able to accumulate large amounts of straw on the soil surface in no-tillage system (NTS). In addition, they can potentially produce large amounts of soluble organic compounds that help improving the efficiency of liming in the subsurface, which favors root growth, thus reducing the risks of loss in yield during dry spells and the harmful effects of “overliming”. The aim of this study was to test the effects of liming on two models of agricultural production, with and without crop-livestock integration, for 2 years. Thus, an experiment was conducted in a Latossolo Vermelho (Oxisol) with a very clayey texture located in an agricultural area under the NTS in Bandeirantes, PR, Brazil. Liming was performed to increase base saturation (V) to 65, 75, and 90 % while one plot per block was maintained without the application of lime (control). A randomized block experimental design was adopted arranged in split-plots and four plots/block, with four replications. The soil properties evaluated were: pH in CaCl2, soil organic matter (SOM), Ca, Mg, K, Al, and P. The effects of liming were observed to a greater depth and for a long period through mobilization of ions in the soil, leading to a reduction in SOM and Al concentration and an increase in pH and the levels of Ca and Mg. In the first crop year, adoption of CLI led to an increase in the levels of K and Mg and a reduction in the levels of SOM; however, in the second crop year, the rate of decline of SOM decreased compared to the decline observed in the first crop year, and the level of K increased, whereas that of P decreased. The extent of the effects of liming in terms of depth and improvement in the root environment from the treatments were observed only partially from the changes observed in the chemical properties studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT The literature on fertilization for carrot growing usually recommends nutrient application rates for yield expectations lower than the yields currently obtained. Moreover, the recommendation only considers the results of soil chemical analysis and does not include effects such as crop residues or variations in yield levels. The aim of this study was to propose a fertilizer recommendation system for carrot cultivation (FERTICALC Carrot) which includes consideration of the nutrient supply by crop residues, variation in intended yield, soil chemical properties, and the growing season (winter or summer). To obtain the data necessary for modeling nutritional requirements, 210 carrot production stands were sampled in the region of Alto Paranaíba, State of Minas Gerais, Brazil. The dry matter content of the roots, the coefficient of biological utilization of nutrients in the roots, and the nutrient harvest index for summer and winter crops were determined for these samples. To model the nutrient supply by the soil, the literature was surveyed in regard to this theme. A modeling system was developed for recommendation of macronutrients and B. For cationic micronutrients, the system only reports crop nutrient export and extraction. The FERTICALC which was developed proved to be efficient for fertilizer recommendation for carrot cultivation. Advantages in relation to official fertilizer recommendation tables are continuous variation of nutrient application rates in accordance with soil properties and in accordance with data regarding the extraction efficiency of modern, higher yielding cultivars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Increasing attention has recently been given to sweet sorghum as a renewable raw material for ethanol production, mainly because its cultivation can be fully mechanized. However, the intensive use of agricultural machinery causes soil structural degradation, especially when performed under inadequate conditions of soil moisture. The aims of this study were to evaluate the physical quality of aLatossolo Vermelho Distroférrico (Oxisol) under compaction and its components on sweet sorghum yield forsecond cropsowing in the Brazilian Cerrado (Brazilian tropical savanna). The experiment was conducted in a randomized block design, in a split plot arrangement, with four replications. Five levels of soil compaction were tested from the passing of a tractor at the following traffic intensities: 0 (absence of additional compaction), 1, 2, 7, and 15 passes over the same spot. The subplots consisted of three different sowing times of sweet sorghum during the off-season of 2013 (20/01, 17/02, and 16/03). Soil physical quality was measured through the least limiting water range (LLWR) and soil water limitation; crop yield and technological parameters were also measured. Monitoring of soil water contents indicated a reduction in the frequency of water content in the soil within the limits of the LLWR (Fwithin) as agricultural traffic increased (T0 = T1 = T2>T7>T15), and crop yield is directly associated with soil water content. The crop sown in January had higher industrial quality; however, there was stalk yield reduction when bulk density was greater than 1.26 Mg m-3, with a maximum yield of 50 Mg ha-1 in this sowing time. Cultivation of sweet sorghum as a second crop is a promising alternative, but care should be taken in cultivation under conditions of pronounced climatic risks, due to low stalk yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Water erosion is one of the main factors driving soil degradation, which has large economic and environmental impacts. Agricultural production systems that are able to provide soil and water conservation are of crucial importance in achieving more sustainable use of natural resources, such as soil and water. The aim of this study was to evaluate soil and water losses in different integrated production systems under natural rainfall. Experimental plots under six different land use and cover systems were established in an experimental field of Embrapa Agrossilvipastoril in Sinop, state of Mato Grosso, Brazil, in a Latossolo Vermelho-Amarelo Distrófico (Udox) with clayey texture. The treatments consisted of perennial pasture (PAS), crop-forest integration (CFI), eucalyptus plantation (EUC), soybean and corn crop succession (CRP), no ground cover (NGC), and forest (FRS). Soil losses in the treatments studied were below the soil loss limits (11.1 Mg ha-1 yr-1), with the exception of the plot under bare soil (NGC), which exhibited soil losses 30 % over the tolerance limit. Water losses on NGC, EUC, CRP, PAS, CFI and FRS were 33.8, 2.9, 2.4, 1.7, 2.4, and 0.5 % of the total rainfall during the period of study, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crop rotation and cover crop can be important means for enhancing crop yield in rainfed areas such as the lower Coastal Bend Region of Texas, USA. A trial was conducted in 1995 as part of a long-term cropping experiment (7 years) to investigate the effect of oat (Avena sativa L.) cover and rotation on soil water storage and yield of sorghum (Sorghum bicolor L.). The trial design was a RCB in a split-plot arrangement with four replicates. Rotation sequences were the main plots and oat cover crop the subplots. Cover crop reduced sorghum grain yield. This effect was attributed to a reduced concentration of available soil N and less soil water storage under this treatment. By delaying cover termination, the residue with a high C/N acted as an N sink through competition and/or immobilization instead of an N source to sorghum plants. Crop rotation had a significantly positive effect on sorghum yield and this effect was attributed to a significantly larger amount of N concentration under these rotation sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of coffee (Coffea arabica L.) population densities on the chemical and microbiological properties of an Oxisol. The work was carried out on soil samples of 0-20 cm depth originated from an experimental site which had been used for coffee tree spacing studies during 15 years, in Paraná State, Brazil. Eight coffee tree populations were evaluated: 7143, 3571, 2381, 1786, 1429, 1190, 1020, and 893 trees/ha. Increasing plant population increased soil pH, exchangeable Ca, Mg, K, extractable P, organic carbon, moisture content and coffee root colonization by vesicular arbuscular mycorrhizal fungi, and decreased exchangeable Al and microbial biomass. Such results were attributed to better erosion control, improved plant residue management and nutrient cycling, and decreased leaching losses. Increasing coffee tree population per unit of area has shown to be an important reclamation recuperation strategy for improving fertility of the acid soils in Paraná, Brazil.