101 resultados para catecholamine depletion
Resumo:
Ablation of the area postrema/caudal nucleus of the tractus solitarius (NTS) complex increases sodium intake, but the effect of selective lesions of the caudal NTS is not known. We measured depletion-induced sodium intake in rats with electrolytic lesions of the commissural NTS that spared the area postrema. One day after the lesion, rats were depleted of sodium with furosemide (10 mg/kg body weight, sc) and then had access to water and a sodium-deficient diet for 24 h when 1.8% NaCl was offered. Water and saline intakes were measured for 2 h. Saline intake was higher in lesioned than in sham-lesioned rats (mean ± SEM: 20 ± 2 vs 11 ± 3 mL/2 h, P < 0.05, N = 6-7). Saline intake remained elevated in lesioned rats when the tests were repeated 6 and 14 days after the lesion, and water intake in these two tests was increased as well. Water intake seemed to be secondary to saline intake both in lesioned and in sham-lesioned rats. A second group of rats was offered 10% sucrose for 2 h/day before and 2, 7, and 15 days after lesion. Sucrose intake in lesioned rats was higher than in sham-lesioned rats only 7 days after lesioning. A possible explanation for the increased saline intake in rats with commissural NTS lesions could be a reduced gastrointestinal feedback inhibition. The commissural NTS is probably part of a pathway for inhibitory control of sodium intake that also involves the area postrema and the parabrachial nucleus.
Resumo:
Cryopreservation has an immunomodulating effect on tracheal tissue as a result of class II antigen depletion due to epithelium exfoliation. However, not all epithelium is detached. We evaluated the role of apoptosis in the remaining epithelium of 30 cryopreserved tracheal grafts. Caspase-3 immunoreactivity of tracheal epithelium was studied in canine tracheal segments cryopreserved with F12K medium, with or without subsequent storage in liquid nitrogen at -196°C for 15 days. Loss of structural integrity of tracheal mixed glands was observed in all cryopreserved tracheal segments. Caspase-3 immunoreactivity in tracheal mucosa and in mixed glands was significantly decreased, in contrast to the control group and to cryopreserved tracheal segments in which it remained high, due to the effect of storage in liquid nitrogen (P < 0.05, ANOVA and Tukey test). We conclude that apoptosis can be triggered in epithelial cells during tracheal graft harvesting even prior to cryopreservation, and although the epithelial caspase-3 immunoreactivity is reduced in tracheal cryopreservation, this could be explained by increased cell death. Apoptosis cannot be stopped during tracheal cryopreservation.
Resumo:
There is evidence that the major mediators of stress, i.e., catecholamines and glucocorticoids, play an important role in modulating thymopoiesis and consequently immune responses. Furthermore, there are data suggesting that glucocorticoids influence catecholamine action. Therefore, to assess the putative relevance of glucocorticoid-catecholamine interplay in the modulation of thymopoiesis we analyzed thymocyte differentiation/maturation in non-adrenalectomized and andrenalectomized rats subjected to treatment with propranolol (0.4 mg·100 g body weight-1·day-1) for 4 days. The effects of β-adrenoceptor blockade on thymopoiesis in non-adrenalectomized rats differed not only quantitatively but also qualitatively from those in adrenalectomized rats. In adrenalectomized rats, besides a more efficient thymopoiesis [judged by a more pronounced increase in the relative proportion of the most mature single-positive TCRαβhigh thymocytes as revealed by two-way ANOVA; for CD4+CD8- F (1,20) = 10.92, P < 0.01; for CD4-CD8+ F (1,20) = 7.47, P < 0.05], a skewed thymocyte maturation towards the CD4-CD8+ phenotype, and consequently a diminished CD4+CD8-/CD4-CD8+ mature TCRαβhigh thymocyte ratio (3.41 ± 0.21 in non-adrenalectomized rats vs 2.90 ± 0.31 in adrenalectomized rats, P < 0.05) were found. Therefore, we assumed that catecholaminergic modulation of thymopoiesis exhibits a substantial degree of glucocorticoid-dependent plasticity. Given that glucocorticoids, apart from catecholamine synthesis, influence adrenoceptor expression, we also hypothesized that the lack of adrenal glucocorticoids affected not only β-adrenoceptor- but also α-adrenoceptor-mediated modulation of thymopoiesis.
Resumo:
7-Nitroindazole (7-NI) inhibits neuronal nitric oxide synthase in vivo and reduces l-DOPA-induced dyskinesias in a rat model of parkinsonism. The aim of the present study was to determine if the anti-dyskinetic effect of 7-NI was subject to tolerance after repeated treatment and if this drug could interfere with the priming effect of l-DOPA. Adult male Wistar rats (200-250 g) with unilateral depletion of dopamine in the substantia nigra compacta were treated with l-DOPA (30 mg/kg) for 34 days. On the 1st day, 6 rats received ip saline and 6 received ip 7-NI (30 mg/kg) before l-DOPA. From the 2nd to the 26th day, all rats received l-DOPA daily and, from the 27th to the 34th day, they also received 7-NI before l-DOPA. Animals were evaluated before the drug and 1 h after l-DOPA using an abnormal involuntary movement scale and a stepping test. All rats had a similar initial motor deficit. 7-NI decreased abnormal involuntary movement induced by l-DOPA and the effect was maintained during the experiment before 7-NI, median (interquartile interval), day 26: 16.75 (15.88-17.00); day 28: 0.00 (0.00-9.63); day 29: 13.75 (2.25-15.50); day 30: 0.5 (0.00-6.25); day 31: 4.00 (0.00-7.13), and day 34: 0.5 (0.00-14.63), Friedman followed by Wilcoxon test,vs day 26, P < 0.05;. The response to l-DOPA alone was not modified by the use of 7-NI before the first administration of the drug (l-DOPA vs time interaction, F1,10 = 1.5, NS). The data suggest that tolerance to the anti-dyskinetic effects of a neuronal nitric oxide synthase inhibitor does not develop over a short-term period of repeated administration. These observations open a possible new therapeutic approach to motor complications of chronic l-DOPA therapy in patients with Parkinson’s disease.
Resumo:
Highly efficient mechanisms regulate intracellular calcium (Ca2+) levels. The recent discovery of new components linking intracellular Ca2+ stores to plasma membrane Ca2+ entry channels has brought new insight into the understanding of Ca2+ homeostasis. Stromal interaction molecule 1 (STIM1) was identified as a Ca2+ sensor essential for Ca2+ store depletion-triggered Ca2+ influx. Orai1 was recognized as being an essential component for the Ca2+ release-activated Ca2+ (CRAC) channel. Together, these proteins participate in store-operated Ca2+ channel function. Defective regulation of intracellular Ca2+ is a hallmark of several diseases. In this review, we focus on Ca2+ regulation by the STIM1/Orai1 pathway and review evidence that implicates STIM1/Orai1 in several pathological conditions including cardiovascular and pulmonary diseases, among others.
Resumo:
Apatone™, a combination of menadione (2-methyl-1,4-naphthoquinone, VK3) and ascorbic acid (vitamin C, VC) is a new strategy for cancer treatment. Part of its effect on tumor cells is related to the cellular pro-oxidative imbalance provoked by the generation of hydrogen peroxide (H2O2) through naphthoquinone redox cycling. In this study, we attempted to find new naphthoquinone derivatives that would increase the efficiency of H2O2 production, thereby potentially increasing its efficacy for cancer treatment. The presence of an electron-withdrawing group in the naphthoquinone moiety had a direct effect on the efficiency of H2O2 production. The compound 2-bromo-1,4-naphthoquinone (BrQ), in which the bromine atom substituted the methyl group in VK3, was approximately 10- and 19-fold more efficient than VK3 in terms of oxygen consumption and H2O2 production, respectively. The ratio [H2O2]produced / [naphthoquinone]consumed was 68 ± 11 and 5.8 ± 0.2 (µM/µM) for BrQ and VK3, respectively, indicating a higher efficacy of BrQ as a catalyst for the autoxidation of ascorbic acid. Both VK3 and BrQ reacted with glutathione (GSH), but BrQ was the more effective substrate. Part of GSH was incorporated into the naphthoquinone, producing a nucleophilic substitution product (Q-SG). The depletion of BrQ by GSH did not prevent its redox capacity since Q-SG was also able to catalyze the production of reactive oxygen species. VK3/VC has already been submitted to clinical trials for the treatment of prostate cancer and has demonstrated promising results. However, replacement of VK3 with BrQ will open new lines of investigation regarding this approach to cancer treatment.
Resumo:
The participation of regulatory T (Treg) cells in B cell-induced T cell tolerance has been claimed in different models. In skin grafts, naive B cells were shown to induce graft tolerance. However, neither the contribution of Treg cells to B cell-induced skin tolerance nor their contribution to the histopathological diagnosis of graft acceptance has been addressed. Here, using male C57BL/6 naive B cells to tolerize female animals, we show that skin graft tolerance is dependent on CD25+ Treg cell activity and independent of B cell-derived IL-10. In fact, B cells from IL-10-deficient mice were able to induce skin graft tolerance while Treg depletion of the host inhibited 100% graft survival. We questioned how Treg cell-mediated tolerance would impact on histopathology. B cell-tolerized skin grafts showed pathological scores as high as a rejected skin from naive, non-tolerized mice due to loss of skin appendages, reduced keratinization and mononuclear cell infiltrate. However, in tolerized mice, 40% of graft infiltrating CD4+ cells were FoxP3+ Treg cells with a high Treg:Teff (effector T cell) ratio (6:1) as compared to non-tolerized mice where Tregs comprise less than 8% of total infiltrating CD4 cells with a Treg:Teff ratio below 1:1. These results render Treg cells an obligatory target for histopathological studies on tissue rejection that may help to diagnose and predict the outcome of a transplanted organ.
Resumo:
The maintenance of extracellular Na+ and Cl- concentrations in mammals depends, at least in part, on renal function. It has been shown that neural and endocrine mechanisms regulate extracellular fluid volume and transport of electrolytes along nephrons. Studies of sex hormones and renal nerves suggested that sex hormones modulate renal function, although this relationship is not well understood in the kidney. To better understand the role of these hormones on the effects that renal nerves have on Na+ and Cl- reabsorption, we studied the effects of renal denervation and oophorectomy in female rats. Oophorectomized (OVX) rats received 17β-estradiol benzoate (OVE, 2.0 mg·kg-1·day-1, sc) and progesterone (OVP, 1.7 mg·kg-1·day-1,sc). We assessed Na+ and Cl-fractional excretion (FENa+ and FECl-, respectively) and renal and plasma catecholamine release concentrations. FENa+, FECl-, water intake, urinary flow, and renal and plasma catecholamine release levels increased in OVX vs control rats. These effects were reversed by 17β-estradiol benzoate but not by progesterone. Renal denervation did not alter FENa+, FECl-, water intake, or urinary flow values vs controls. However, the renal catecholamine release level was decreased in the OVP (236.6±36.1 ng/g) and denervated rat groups (D: 102.1±15.7; ODE: 108.7±23.2; ODP: 101.1±22.1 ng/g). Furthermore, combining OVX + D (OD: 111.9±25.4) decreased renal catecholamine release levels compared to either treatment alone. OVE normalized and OVP reduced renal catecholamine release levels, and the effects on plasma catecholamine release levels were reversed by ODE and ODP replacement in OD. These data suggest that progesterone may influence catecholamine release levels by renal innervation and that there are complex interactions among renal nerves, estrogen, and progesterone in the modulation of renal function.
Resumo:
Iron bioavailability was evaluated in three mixtures of cereals, seeds, and grains ("Human Ration"): light, regular, and homemade provided to rats. The animals received an iron depletion diet for 21 days, followed by a repletion diet containing 12 mg·kg-1 of iron for 14 days. The hemoglobin regeneration efficiency and the relative biological value did not differ between the light mixture and control group. The iron bioavailability of the light mixture of cereals, seeds, and grains and the control group were 99.99±27.62 and 80.02±36.63, respectively, while the regular and homemade mixtures of cereals, seeds, and grains showed lower iron bioavailability, 50.12±35.53 and 66.66±15.44, respectively; the iron content of the diet with light cereal mixture light was statistically similar to that of the control (ferrous sulfate 99.99±27.62). The high content of tannin (202.81±19.53 mg·100-1) in the diet with the regular cereal mixture may have contributed to its low iron bioavailability. The higher intake of soluble fiber by the animals fed the light mixture (21.15±0.92 g) was moderately correlated (r=0.5712, p=0.0018) with the concentration of propionate in the caecal bulk (65.49±11.08 µmol/g). The short chain fatty acids produced by soluble fiber fermentation, associated with the low-content of tannin may have improved iron solubility and absorption in the light cereal mixture diet. The iron bioavailability in the light mixture of cereals, seeds, and grains was similar to that of ferrous sulfate.
Resumo:
The degermination of corn grains by dry milling generates 5% of a fibrous residue. After segregation and micronization, corn bran becomes a potential source of dietary fiber consumption. However, its effect on iron bioavailability has not been reported in the literature. The objective of the present study was to determine the nutritional composition of corn bran and its effects on iron bioavailability using the hemoglobin depletion-repletion method in rats. The animals were divided into two groups: cellulose (control) and corn bran (experimental). The bran had high content of total dietary fiber, especially the insoluble fraction, and low phytate content. Hemoglobin uptake did not differ between groups at the end of repletion period, and the iron relative bioavailability value of the corn bran diet was 104% in comparison to that of the control group. The product evaluated proved to be a potential source of dietary fiber and it showed no negative effects on iron bioavailability.
Resumo:
In order to halt the depletion of global ecological capital, a number of different kinds of meetings between Governments of countries in the world has been scheduled. The need for global coordination of environmental policies has become ever more obvious, supported by more and more evidence of the running down of ecological capital. But there are no formal or binding arrangements in sight, as global environmental coordination suffers from high transaction costs (qualitative voting). The CO2 equivalent emissions, resulting in global warming, are driven by the unstoppable economic expansion in the global market economy, employing mainly fossil fuel generated energy, although at the same time lifting sharply the GDP per capita of several emerging countries. Only global environmental coordination on the successful model of the World Band and the IMF (quantitative voting) can stem the rising emissions numbers and stop further environmental degradation. However, the system of weighted voting in the WB and the IMF must be reformed by reducing the excessive voting power disparities, for instance by reducing all member country votes by the cube root expression.