121 resultados para carbohydrate-active enzymes
Resumo:
Only one drug is currently available for the treatment and control of schistosomiasis and the increasing risk of selecting strains of schistosome that are resistant to praziquantel means that the development of new drugs is urgent. With this objective we have chosen to target the enzymes modifying histones and in particular the histone acetyltransferases and histone deacetylases (HDAC). Inhibitors of HDACs (HDACi) are under intense study as potential anti-cancer drugs and act via the induction of cell cycle arrest and/or apoptosis. Schistosomes like other parasites can be considered as similar to tumours in that they maintain an intense metabolic activity and rate of cell division that is outside the control of the host. We have shown that HDACi can induce apoptosis and death of schistosomes maintained in culture and have set up a consortium (Schistosome Epigenetics: Targets, Regulation, New Drugs) funded by the European Commission with the aim of developing inhibitors specific for schistosome histone modifying enzymes as novel lead compounds for drug development.
Resumo:
Praziquantel (PZQ) is currently the only drug widely used for the treatment of schistosomiasis, but the antimalarial drug mefloquine (Mef) possesses interesting antischistosomal properties. Combination therapy with these two drugs has been suggested as a strategy for transmission control, as PZQ is active against adult worms and Mef is active against schistosomula. To examine the efficacy of combination therapy, Schistosoma mansoni-reinfected mice were separated into seven groups: untreated (I), treated with PZQ in doses of 200 mg/kg (II) or 1,000 mg/kg (III), treated with Mef in doses of 200 mg/kg (IV) or 400 mg/kg (V); each dose was divided equally and given on two consecutive days. Group VI was treated with doses of PZQ + Mef as in groups II and IV, respectively, while group VII was treated with PZQ + Mef as in groups III and V, respectively. PZQ + Mef at the reduced doses of 200 mg/kg each enhanced the therapeutic efficacy over the reduced PZQ dose alone as shown by a very high reduction in the total numbers of mature worms (95% vs. 49%), immature worms (96% vs. 29%) and the complete eradication of immature females, mature females and immature eggs. The reduction in worm burden was associated with the healing of hepatic granulomatous lesions and the normalisation of all liver enzymes. Therefore, the use of Mef with PZQ is more effective than PZQ alone and should be considered for clinical trials in humans as a potential treatment regimen to prevent treatment failures in areas with high rates of schistosomiasis.
Resumo:
Lectin-carbohydrate binding may be involved in the recognition of Schistosoma mansoni sporocysts by haemocytes of Biomphalaria; therefore, we tested if this interaction is associated with snail resistance against Schistosoma infection. In vitro data showed that most of the S. mansoni sporocysts cultured with haemocytes from Biomphalaria glabrata BH, a highly susceptible snail strain, had a low number of cells that adhered to their tegument and a low mortality rate. Moreover, the addition of N-acetyl-D-glucosamine (GlcNAc) did not alter this pattern of adherence and mortality. Using haemocytes and haemolymph of Biomphalaria tenagophila Cabo Frio, we observed a high percentage of sporocysts with adherent cells, but complete encapsulation was not detected. Low concentrations of GlcNAc increased haemocyte binding to the sporocysts and mortality, which returned to basal levels with high concentrations of the carbohydrate. In contrast, haemocytes plus haemolymph from B. tenagophila Taim encapsulated cellular adhesion index of level 3 and destroyed over 30% of the S. mansoni sporocysts in culture. Interestingly, the addition of GlcNAc, but not mannose, to the culture medium resulted in the significant inhibition of cellular adhesion to the parasite tegument and the reduction of parasite mortality, suggesting that GlcNAc carbohydrate moieties are important to the recognition of S. mansoni by B. tenagophila Taim.
Resumo:
Although the reported aetiological agent of cutaneous leishmaniasis (CL) in Sri Lanka is Leishmania donovani, the sandfly vector remains unknown. Ninety-five sandflies, 60 females and 35 males, collected in six localities in the district of Matale, central Sri Lanka, close to current active transmission foci of CL were examined for taxonomically relevant characteristics. Eleven diagnostic morphological characters for female sandflies were compared with measurements described for Indian and Sri Lankan sandflies, including the now recognised Phlebotomus argentipes sensu lato species complex. The mean morphometric measurements of collected female sandflies differed significantly from published values for P. argentipes morphospecies B, now re-identified as Phlebotomus annandalei from Delft Island and northern Sri Lanka, from recently re-identified P. argentipes s.s. sibling species and from Phlebotomus glaucus. Furthermore, analysis of underlying variation in the morphometric data through principal component analysis also illustrated differences between the population described herein and previously recognised members of the P. argentipes species complex. Collectively, these results suggest that a morphologically distinct population, perhaps most closely related to P. glaucus of the P. argentipess. I. species complex, exists in areas of active CL transmission. Thus, research is required to determine the ability of this population of flies to transmit cutaneous leishmaniasis.
Resumo:
The use of highly active antiretroviral therapy (HAART) for human immunodeficiency virus (HIV)-infected patients has reduced the number of acquired immune deficiency syndrome-related deaths worldwide. This study assessed the impact of HAART on the survival and death rates of vertically HIV-infected children and adolescents in Belo Horizonte, Brazil. Data were obtained from a historic cohort of vertically HIV-infected children and adolescents aged zero-19 years old who were admitted from March 1989-December 2004 and were followed until June 2006. Patients who used HAART were included if they were treated for at least 12 weeks. Of 359 patients, 320 patients met the inclusion criteria. The overall mortality rate was 9.7% [31/320; 95% confidence interval (CI): 6.0-13%]. The median survival for the non-HAART and HAART groups was 31.5 and 55.9 months, respectively (log rank = 22.11, p < 0.0001). In the multivariate analysis, the statistically significant variables were HAART and the weight-for-age Z score < -2, with HAART constituting a protective factor [relative risk (RR): 0.13; CI 95%: 0.05-0.33] and malnutrition constituting a risk factor (RR: 3.44; CI 95%: 1.60-7.40) for death. The incidence of death was 5.1/100 person-years in the non-HAART group and 0.8/100 person-years in the HAART group (p < 0.0001).
Resumo:
Sandflies (Diptera: Psychodidae) are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2). Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells) that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania.
Resumo:
Trypanosoma evansi, which causes surra, is descended from Trypanosoma brucei brucei, which causes nagana. Although both parasites are presumed to be metabolically similar, insufficient knowledge of T. evansiprecludes a full comparison. Herein, we provide the first report on the subcellular localisation of the glycolytic enzymes in T. evansi, which is a alike to that of the bloodstream form (BSF) of T. b.brucei: (i) fructose-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hexokinase, phosphofructokinase, glucose-6-phosphate isomerase, phosphoglycerate kinase, triosephosphate isomerase (glycolytic enzymes) and glycerol-3-phosphate dehydrogenase (a glycolysis-auxiliary enzyme) in glycosomes, (ii) enolase, phosphoglycerate mutase, pyruvate kinase (glycolytic enzymes) and a GAPDH isoenzyme in the cytosol, (iii) malate dehydrogenase in cytosol and (iv) glucose-6-phosphate dehydrogenase in both glycosomes and the cytosol. Specific enzymatic activities also suggest that T. evansiis alike to the BSF of T. b. bruceiin glycolytic flux, which is much faster than the pentose phosphate pathway flux, and in the involvement of cytosolic GAPDH in the NAD+/NADH balance. These similarities were expected based on the close phylogenetic relationship of both parasites.
Resumo:
Several studies point to the increased risk of reactivation of latent tuberculosis infection (LTBI) in patients with chronic inflammatory arthritis (CIAs) after using tumour necrosis factor (TNF)a blockers. To study the incidence of active mycobacterial infections (aMI) in patients starting TNFa blockers, 262 patients were included in this study: 109 with rheumatoid arthritis (RA), 93 with ankylosing spondylitis (AS), 44 with juvenile idiopathic arthritis (JIA) and 16 with psoriatic arthritis (PsA). All patients had indication for anti-TNFa therapy. Epidemiologic and clinical data were evaluated and a simple X-ray and tuberculin skin test (TST) were performed. The control group included 215 healthy individuals. The follow-up was 48 months to identify cases of aMI. TST positivity was higher in patients with AS (37.6%) than in RA (12.8%), PsA (18.8%) and JIA (6.8%) (p < 0.001). In the control group, TST positivity was 32.7%. Nine (3.43%) patients were diagnosed with aMI. The overall incidence rate of aMI was 86.93/100,000 person-years [95% confidence interval (CI) 23.6-217.9] for patients and 35.79/100,000 person-years (95% CI 12.4-69.6) for control group (p < 0.001). All patients who developed aMI had no evidence of LTBI at the baseline evaluation. Patients with CIA starting TNFa blockers and no evidence of LTBI at baseline, particularly with nonreactive TST, may have higher risk of aMI.
Resumo:
The aim of this work was to quantify the protein, starch and total sugars levels during histodifferentiation and development of somatic embryos of Acca sellowiana Berg. For histological observations, the samples were dehydrated in a battery of ethanol, embedded in historesin and stained with toluidine blue (morphology), coomassie blue (protein bodies) and periodic acid-Schiff (starch). Proteins were extracted using a buffer solution, precipitated using ethanol and quantified using the Bradford reagent. Total sugars were extracted using a methanol-chloroform-water (12:5:3) solution and quantified by a reaction with anthrone at 0.2%. Starch was extracted using a 30% perchloric acid solution and quantified by a reaction with anthrone at 0.2%. During the somatic embryogenesis' in vitro morphogenesis and differentiation processes, the total protein levels decreased and the soluble sugars levels increased during the first 30 days in culture and remained stable until the 120th day. On the other hand, total protein levels increased according to the progression in the developmental stages of the somatic embryos. The levels of total sugars and starch increased in the heart and cotyledonary stages, and decreased in the torpedo and pre-cotyledonary stages. These compounds play a central role in the development of somatic embryos of Acca sellowiana.
Resumo:
The objective of this work was to evaluate the effect of pelletized or extruded diets, with different levels of carbohydrate and lipid, on the gastrointestinal transit time (GITT) and its modulation in pacu (Piaractus mesopotamicus). One hundred and eighty pacu juveniles were fed with eight isonitrogenous diets containing two carbohydrate levels (40 and 50%) and two lipid levels (4 and 8%). Four diets were pelletized and four were extruded. Carbohydrate and lipid experimental levels caused no changes to the bolus transit time. However, the bolus permanence time was related to diet processing. Fish fed pelletized diets exhibited the highest gastrointestinal transit time. Regression analysis of bolus behavior for pelletized and extruded diets with 4% lipid depicted different fits. GITT regression analysis of fish fed 8% lipid was fitted to a cubic equation and displayed adjustments of food permanence, with enhanced utilization of the diets, either with extruded or pelletized diets. GITT of fish fed extruded diets with 4% lipid was adjusted to a linear equation. The GITT of pacu depends on the diet processing and is affected by dietary levels of lipid and carbohydrate.
Resumo:
The objective of this work was to evaluate the effect of inclusion of dietary glycerol in replacement to starch on the growth and energy metabolism of Nile tilapia juveniles. The experiment was carried out in a completely randomized design with four treatments (0, 5, 10, and 15% purified glycerol) and six replicates. Pelleted, isonitrogenous, and isocaloric diets were provided for 60 days. Growth performance parameters and muscle glucose and protein concentrations were not affected by dietary glycerol levels. The treatment with 15% glycerol presented higher levels of muscle and liver triglycerides. A quadratic effect of treatments on muscle and liver triglyceride concentrations was observed. The treatment with 0% glycerol presented higher hepatic glucose levels than the one with 15%. Treatments did not differ for concentrations of liver protein, as well as of plasma glucose, triglycerides, and protein. Treatments with 10 and 15% glycerol showed higher activity of the glucose-6-phosphate-dehydrogenase enzyme than the treatment with 5%; however, there were no significant differences in the hepatic activities of the malic and glycerol kinase enzymes. A linear positive effect of treatments was observed on the activity of the glycerol kinase enzyme in liver. Levels of glycerol inclusion above 10% in the diet of Nile tilapia juveniles characterize it as a lipogenic nutrient.
Resumo:
Abstract Gastrointestinal bleeding represents a common medical emergency, with considerable morbidity and mortality rates, and a prompt diagnosis is essential for a better prognosis. In such a context, endoscopy is the main diagnostic tool; however, in cases where the gastrointestinal hemorrhage is massive, the exact bleeding site might go undetected. In addition, a trained professional is not always present to perform the procedure. In an emergency setting, optical colonoscopy presents limitations connected with the absence of bowel preparation, so most of the small bowel cannot be assessed. Scintigraphy cannot accurately demonstrate the anatomic location of the bleeding and is not available at emergency settings. The use of capsule endoscopy is inappropriate in the acute setting, particularly in the emergency department at night, and is a highly expensive method. Digital angiography, despite its high sensitivity, is invasive, presents catheterization-related risks, in addition to its low availability at emergency settings. On the other hand, computed tomography angiography is fast, widely available and minimally invasive, emerging as a promising method in the diagnostic algorithm of these patients, being capable of determining the location and cause of bleeding with high accuracy. Based on a critical literature review and on their own experience, the authors propose a computed tomography angiography protocol to assess the patient with gastrointestinal bleeding.
Resumo:
The aim of this work was to gain knowledge of enzymatic processes for the synthesis fatty acid esters of sugar, with the objective to develop an enzymatic process for the preparation of non-toxic biodegradable surface-active agents derived entirely from renewable resources. A wide range of data were collected for reaction conditions involving different sugars (glucose, fructose and sucrose), fatty acids (oleic, palmitic, lauric), solvents (hexane, heptane and t-butanol) and different sources of lipases in both free and immobilized forms. As a solvent t-butanol provided the best conditions to create a catalytic liquid phase in which the reaction occurs. Sugars were preferentially esterified in the following order: fructose > glucose > sucrose, depending on the enzyme preparation. For fructose no influence was found concerning de acyl donor and similar rates were achieved for all tested fatty acids. Ester synthesis was maximized for substrates containing fructose, lauric or oleic acids, t-butanol and lipase from porcine pancreas immobilized on polysiloxane-polyvinyl alcohol particles. Under such conditions molar conversions were higher than 50%.
Resumo:
Glucosidases are involved in key steps in the processing of oligosaccharides by cleaving O-glucose residues. Since they catalyze breaking and transfer reactions of glucosidic groups for the normal growth and development of all the cells, defects or genetic deficiencies in these enzymes are associated with serious disorders of the carbohydrate metabolism. Thus, glucosidases represent important targets to develop inhibitors, owing to their potential activities against viruses, tumoral growth and metastasis, diabetes, Gaucher's disease and other syndromes associated with the lisosomal storage of glucoesphingolipids, and osteoarthritis. This paper presents a description of the biochemical pathways and mechanisms of alpha and beta-glucosidases, and the currently available drugs capable to inhibit these enzymes.
Resumo:
Aminoalcohols have found important applications in synthetic and medicinal chemistry, being used as chiral building blocks for the synthesis of many biologically active compounds. This class of compounds has been also used as chiral auxiliaries and ligands in asymmetric synthesis. Due to the importance of aminoalcohols in the treatment of several diseases, such as tuberculosis, the aim of this article is the synthesis and preliminary evaluation against tuberculosis of six aminoalcohols in 5 or 6 steps using D-mannitol as starting material, which is a useful carbohydrate employed in many syntheses.