149 resultados para Vector Autoregressions
Resumo:
Trypanosoma cruzi and the majority of its insect vectors (Hemiptera, Reduviidae, Triatominae) are confined to the Americas. But while recent molecular studies indicate a relatively ancient origin for the parasite (~65 million years ago) there is increasing evidence that the blood-sucking triatomine vectors have evolved comparatively recently (<5 mya). This review examines the evidence for these ideas, and attempts to reconcile the apparent paradox by suggesting that marsupial opossums (Didelphidae) may have played a role, not just as original reservoir hosts, but also as original vectors of the parasite.
Resumo:
The vector competence of Culex quinquefasciatus from five localities in Brazil to Dirofilaria immitis was evaluated experimentally. Females from each locality were fed on an infected dog (~ 6 microfilariae/µl blood). A sample of blood fed mosquitoes were dissected approximately 1 h after blood meal. These results demonstrated that all had ingested microfilariae (mean, 4.8 to 24.6 microfilariae/mosquito). Fifteen days after the infected blood meal, the infection and infective rates were low in all populations of Cx. quinquefasciatus. The mean number of infective larvae detected in the head and proboscis of these mosquitoes was 1-1.5. The vector efficiency, the number of microfilariae ingested/number of infective larvae, was low for all populations of Cx. quinquefasciatus. However, the survival rate for all populations was high (range 50-75%). The survival rate of Aedes aegypti assayed simultaneously for comparison was low (24.7%), while the vector efficiency was much higher than for Cx. quinquefasciatus. These data suggest that the vector competence of all assayed populations of Cx. quinquefasciatus to D. immitis in Brazil is similar and that this species is a secondary vector due to its low susceptibility. Nevertheless, vector capacity may vary between populations due to differences in biting frequency on dogs that has been reported in Brazil.
Resumo:
The Flaviviridae is a family of about 70 mostly arthropod-borne viruses many of which are major public health problems with members being present in most continents. Among the most important are yellow fever (YF), dengue with its four serotypes and Japanese encephalitis virus. A live attenuated virus is used as a cost effective, safe and efficacious vaccine against YF but no other live flavivirus vaccines have been licensed. The rise of recombinant DNA technology and its application to study flavivirus genome structure and expression has opened new possibilities for flavivirus vaccine development. One new approach is the use of cDNAs encopassing the whole viral genome to generate infectious RNA after in vitro transcription. This methodology allows the genetic mapping of specific viral functions and the design of viral mutants with considerable potential as new live attenuated viruses. The use of infectious cDNA as a carrier for heterologous antigens is gaining importance as chimeric viruses are shown to be viable, immunogenic and less virulent as compared to the parental viruses. The use of DNA to overcome mutation rates intrinsic of RNA virus populations in conjunction with vaccine production in cell culture should improve the reliability and lower the cost for production of live attenuated vaccines. The YF virus despite a long period ignored by researchers probably due to the effectiveness of the vaccine has made a come back, both in nature as human populations grow and reach endemic areas as well as in the laboratory being a suitable model to understand the biology of flaviviruses in general and providing new alternatives for vaccine development through the use of the 17D vaccine strain.
Resumo:
Molecular studies of insect disease vectors are of paramount importance for understanding parasite-vector relationship. Advances in this area have led to important findings regarding changes in vectors' physiology upon blood feeding and parasite infection. Mechanisms for interfering with the vectorial capacity of insects responsible for the transmission of diseases such as malaria, Chagas disease and dengue fever are being devised with the ultimate goal of developing transgenic insects. A primary necessity for this goal is information on gene expression and control in the target insect. Our group is investigating molecular aspects of the interaction between Leishmania parasites and Lutzomyia sand flies. As an initial step in our studies we have used random sequencing of cDNA clones from two expression libraries made from head/thorax and abdomen of sugar fed L. longipalpis for the identification of expressed sequence tags (EST). We applied differential display reverse transcriptase-PCR and randomly amplified polymorphic DNA-PCR to characterize differentially expressed mRNA from sugar and blood fed insects, and, in one case, from a L. (V.) braziliensis-infected L. longipalpis. We identified 37 cDNAs that have shown homology to known sequences from GeneBank. Of these, 32 cDNAs code for constitutive proteins such as zinc finger protein, glutamine synthetase, G binding protein, ubiquitin conjugating enzyme. Three are putative differentially expressed cDNAs from blood fed and Leishmania-infected midgut, a chitinase, a V-ATPase and a MAP kinase. Finally, two sequences are homologous to Drosophila melanogaster gene products recently discovered through the Drosophila genome initiative.
Resumo:
Correspondence analysis was applied to sand fly sampling in 865 stations from the Western Mediterranean basin. The position of each of 24 species was determined with respect to the bioclimatic belts. Thus, the multidimensional analyses manifest clear correlations between bioclimatic belts and their expression in the area, the phytosociological groupings, and vector species of visceral and cutaneous leishmaniases. The transfer of these data to usual maps allows to delimit the geographical distribution of these diseases in the Western Mediterranean basin and contributes to the determination, in a rational manner, of the high risk zones.
Resumo:
Treatment of cancer using gene therapy is based on adding a property to the cell leading to its elimination. One possibility is the use of suicide genes that code for enzymes that transform a pro-drug into a cytotoxic product. The most extensively used is the herpes simplex virus thymidine kinase (TK) gene, followed by administration of the antiviral drug ganciclovir (GCV). The choice of the promoter to drive the transcription of a transgene is one of the determinants of a given transfer vector usefulness, as different promoters show different efficiencies depending on the target cell type. In the experiments presented here, we report the construction of a recombinant adenovirus carrying TK gene (Ad-TK) driven by three strong promoters (P CMV IE, SV40 and EN1) and its effectiveness in two cell types. Human HeLa and mouse CCR2 tumor cells were transduced with Ad-TK and efficiently killed after addition of GCV. We could detect two sizes of transcripts of TK gene, one derived from the close together P CMV IE/SV40 promoters and the other from the 1.5 Kb downstream EN1 promoter. The relative amounts of these transcripts were different in each cell type thus indicating a higher flexibility of this system.
Resumo:
The behavioural response of Triatoma pseudomaculata to chemical substances present in their faeces or cuticle (footprints) was analyzed. Groups of larvae were simultaneously exposed to a clean filter paper and to another paper impregnated with a chemical stimulus in a circular arena. In these choice experiments, the insects aggregated significantly around papers impregnated with dry faeces. In addition, the bugs also showed a significant aggregation response to papers impregnated with compounds derived from their cuticle that were deposited by contact on the substrate. These results indicate that chemical compounds that affect the behaviour of T. pseudomaculata are present in the faeces and in the cuticle of this species. Results are discussed in relation to chemical communication in the Triatominae, as well as to the potential use of these substances in traps or sensors for the detection of this species.
Resumo:
To clarify the epidemiologic importance of Triatoma brasiliensis, the most important Chagas disease vector in the Northeastern of Brazil, capture data related to this species, its distribution, capture index, and percentages of natural infection by Trypanosoma cruzi were examined in 12 different Brazilian states. The Brazilian National Health Foundation collected these data from 1993 to 1999, a period during which a total of 1,591,280 triatomines (21 species) were captured in domiciles within the geographic range of T. brasiliensis. Of this total, 422,965 (26.6%) were T. brasiliensis, 99.8% of which were collected in six states, and 54% in only one state (Ceará). The percentage of bugs infected with T. cruzi varied significantly among states, ranging from 0% (Goiás, Maranhão, Sergipe, and Tocantins) to more than 3% (Alagoas, Minas Gerais, and Rio Grande do Norte) with an average of 1.3%. This latter value represents a dramatic reduction in the natural infection percentages since 1983 (6.7%) suggesting that, despite the impossibility of eradicating this native species, the control measures have significantly reduced the risk of transmission. However, the wide geographic distribution of T. brasiliensis, its high incidence observed in some states, and its variable percentages of natural infection by T. cruzi indicate the need for sustained entomological surveillance and continuous control measures against this vector.
Resumo:
Sand flies were collected in the central region of the state of Rondônia (W 64º30' to 63º00' and S 10º00'to 11º00') using Shannon and CDC light traps from October 1997 to August 2000. A total of 85,850 specimens representing 78 named species were captured. Of these 14 were new records for Rondônia. The proportion of males/females was 1/1.131. Trypanosomatids, that are presently being identified, were detected in 11 species. Leishmania (Viannia) naiffi was recorded from Psychodopygus davisi and P. hirsutus. In the present study the dominant species was P. davisi (39.6%) followed by Lutzomyia whitmani (13.1%), P. carrerai (11.6%), and P. hirsutus (10.2%). The importance of P. davisi as a vector of zoonotic cutaneous leishmaniasis is discussed.
Resumo:
The aim of this note was to record for the first time the finding of Hemilucilia segmentaria acting as biological vector of Dermatobia hominis, during a study of the diversity of Calliphoridae at Reserva Biológica do Tinguá, Rio de Janeiro, Brazil. The insects were captured using traps baited with chicken vicera, for a period of 28-30 h twice per month. In the period of one year, 1987 insects were collected, 7.5% of which belonged to the H. segmentaria; of these a female was captured in May 2001, carrying a mass of 20 eggs on the left side of its abdomen.
Resumo:
The molluscicidal effect of nicotinanilide was evaluated and compared with niclosamide (2',5-dichloro-4'-nitrosalicylanilide, ethanolamide salt) against different stages of the freshwater snail Lymnaea luteola i.e., eggs, immature, young mature, and adults. Calculated values of lethal concentrations (LC50 and LC90 ) showed that both nicotinanilide and niclosamide as toxic against eggs, immature, and adults. The young mature stage of the snails was comparatively more tolerant to both molluscicides than the other stages. The toxicity of the intermediate compounds of nicotinanilide against the young mature stage of the snails showed them as ineffective. The mortality pattern of the snails exposed to LC90 concentration of these molluscicides showed niclosamide to kill faster (within 8 to 9 h) than nicotinanilide (26 to 28 h). In view of the above studies it may be concluded that both molluscicides are toxic against all the stages of the L. luteola snails.
Resumo:
The manuscript describes a study on the blood cholinesterase (ChE) level in an exposed population at different interval of time after spraying with malathion suspension (SRES) use for kala-azar vector control in an endemic area of Bihar, India. The toxicity of a 5% malathion formulation in the form of a slow release emulsified suspension (SRES) was assessed by measuring serum ChE levels in spraymen and in the exposed population.The study showed a significant decrease in ChE levels in the spraymen (p < 0.01) after one week of spraying and in exposed population one week and one month after of spraying (p < 0.01), but was still within the normal range of ChE concentration, one year after spraying, the ChE concentration in the exposed population was the same as prior to spraying (p > 0.01). On no occasion was the decrease in ChE level alarming. A parallel examination of the clinical status also showed the absence of any over toxicity or any behavioural changes in the exposed population. Hence, it may be concluded that 5% malathion slow release formulation, SRES, is a safe insecticide for use as a vector control measure in endemic areas of kala-azar in Bihar, India so long as good personal protection for spraymen is provided to minimize absorption and it can substitute the presently used traditional DDT spray.
Resumo:
Triatoma rubrovaria has become the most frequently captured triatomine species since the control of T. infestans in the state of Rio Grande do Sul (RS), Brazil. The aim of this study was to evaluate aspects of the vectorial competence of T. rubrovaria using nymphs raised in laboratory under environmental conditions of temperature and humidity and fed on mice. The average developmental period of T. rubrovaria was 180.1 days. The percentage of defecation shortly after feeding was still higher than previous studies in which samples of T. rubrovaria subjected to a slight starvation period before the blood meal were used. The obtained results support former indication that T. rubrovaria presents bionomic characteristics propitious to be a good vector of Trypanosoma cruzi to man. Therefore its domiciliary invasion process must be continuously monitored.
Resumo:
Molecular evidence showed 46.2% of Trypanosoma cruzi infection in Mepraia spinolai insects from North-Central Chile, which is significantly higher than previous reports of up to 26% by microscopic observation. Our results show similar infection levels among nymphal stages, ranging from 38.3 to 54.1%, indicating that younger nymphs could be as important as older ones in parasite transmission. A cautionary note must be stressed to indicate the potential role of M. spinolai in transmitting T. cruzi in country areas due to the high infection level detected by molecular analysis.
Resumo:
This article is an integrative mini review of the research on the interactions between Trypanosoma rangeli and the insect vector, Rhodnius prolixus. Special attention is given to the interactions of these parasites with the gut environment, gut walls, with hemolymph invasion, hemocytes, hemocyte microaggregations, prophenoloxidase-activating system, superoxide, and nitric acid generation and eicosanoid pathways. We described factors affecting vectorial capacity and suggested that T. rangeli may modulate the hemocoelic invasion and the survival of the parasites by overcoming the cellular and humoral defense reactions of the insect vector at different physiological events. The mechanisms of these interactions and their significance for parasite transmission are discussed.