142 resultados para Tropical riverine forest
Resumo:
Growth of seedlings of fifteen tropical tree species representative, at the adult stage, of different successional positions, was studied under field conditions. Seedlings were grown in three treatments: full sun (FS), artificial shade imposed by neutral screens (AS) and natural shade imposed by a closed canopy in a Forest Reserve in Southeast Brazil (NS). Most of the studied species survived in both shade treatments, although their growth was severely affected. Decreases in height, internode numbers, dry weight, leaf area, root:shoot ratio (R:S) and increases in leaf mass ratio (LMR), leaf area ratio (LAR) and specific leaf area (SLA) were common responses to shade. Relative growth rates (RGRs) and net assimilation rates (NARs) were consistently lower in the shaded treatments than in full sun. RGR was significantly correlated with NAR in the FS and NS treatments, whereas it was correlated with LAR in the AS treatment. Natural shade had more severe effects than artificial shade on leaf area reduction and RGR. Between-species differences in R:S, LMR, SLA and LAR were not related to the successional status of species. However, there was a tendency for early-successional species to have higher RGRs than late successional ones, regardless of the light environment. Late-successional species also showed less pronounced responses to shade than early ones. The characteristics presented by the late-successional species may be associated with shade tolerance, enabling their persistence under dense canopies.
Resumo:
The dynamics of forests subject to inundation appears to be strongly influenced by the frequency and intensity of natural disturbances such as flooding. In a late successional tidal floodplain forest near the Amazon port of Belém, Brazil, we tested this prediction by measuring seasonal patterns of phenology and litterfall in relation to two key variables: rainfall and tide levels. In addition, we estimated the root biomass and the annual growth of the forest community by measuring stem increments over time. Our results showed high correlations between phenological events (flowering and fruiting) and rainfall and tide levels, while correlations between litterfall and these variations were generally weaker. Contrary to our prediction, root biomass to 1 m depth showed no significant differences along the topographic gradient, and the root biomass at all topographic levels was low to intermediate compared with other neotropical forests. Both litterfall and total stem increment were high compared to other tropical forest, indicating the high productivity of this ecosystem.
Resumo:
The horizontal and vertical tree community structure in a lowland Atlantic Rain Forest was investigated through a phytosociological survey in two 0.99 ha plots in the Intervales State Park, São Paulo State. All trees > 5 cm diameter at breast height were recorded. 3,078 individuals belonging to 172 species were identified and recorded. The Shannon diversity index was H' = 3.85 nat.ind.-1. The Myrtaceae family showed the greatest floristic richness (38 species) and the highest density (745 individuals) in the stand. Euterpe edulis Mart. had the highest importance value (33.98%) accounting for 21.8% of all individuals recorded. The quantitative similarity index was higher than the qualitative index, showing little structural variation between plots. However, the large number of uncommon species resulted in pronounced floristic differences. A detrended correspondence analysis (DCA) generated three arbitrary vertical strata. Stratum A (> 26 m), where Sloanea guianensis (Aubl.) Benth. and Virola bicuhyba (Schott. ex A.DC.) Warb. were predominant showed the lowest density. Stratum B (8 m < h < 26 m) had the greatest richness and diversity, and stratum C (< 8 m) showed the highest density. Euterpe edulis, Guapira opposita (Vell.) Reitz, Garcinia gardneriana (Planch. & Triana) Zappi, and Eugenia mosenii (Kausel) Sobral were abundant in strata B and C. The occurrence of strata in tropical forests is discussed and we recommend the use of DCA for others studies of the vertical distribution of tropical forest tree communities.
Resumo:
The mechanisms that maintain tree diversity in tropical rain forests are still in debate. Variations in forest structural components produce forest microenvironmental heterogeneity, which in turn may affect plant performance and have been scarcely analyzed in the Amazon. Palms are widespread in the Neotropical rainforests and have relatively well known taxonomy, apart from being ecologically and economically important. The understanding of how palms respond to variation in the forest structural components may help to explain their abundance and richness in a given area. In this study, we describe a palm community and analyze how it is affected by forest microenvironmental heterogeneity. In a pristine "Terra Firme" forest at Reserva Ducke, Manaus, we recorded all adult palm trees in twenty 100 × 10 m plots. In the same plots we recorded the variation in canopy openness, the leaflitter thickness and counted all non-palm forest trees. A total of 713 individuals in 29 palm species were found. The three most abundant species were Astrocaryum sciophilum (Miq.) Pulle, A. gynacanthum Mart. and Attalea attaleoides (Barb. Rodr.) Wess. Boer. The most locally abundant species were also very frequent or occurred in a larger number of plots. There were no significant effects of litter depth, forest canopy openness and forest tree abundance on palm richness. However, in areas where leaf litter was thicker a significant lower number of palm trees occurred. In microsites where proportionally more incident light was reaching the forest understory, due to higher canopy opening, significantly more palm trees were present.
Resumo:
Moss diversity at various sites in the Tropical Atlantic Rainforest of southeastern Brazil is high, with 338 taxa distributed among 49 families and 129 genera. Comparisons of species richness in the Tropical Atlantic Rainforest in southeastern Brazil suggest that the moss flora is not uniform, and that lowland, montane, submontane, and upper montane Atlantic rainforests have very different moss floras. Montane Atlantic Rainforest has the largest number of exclusive species and the highest species richness, Sub-Montane Atlantic Rainforest has intermediate species richness, while the Lowland Atlantic Rainforest has fewer species. The high diversity of the Montane Atlantic Rainforest could be explained by the diversity of climatic, edaphic, and physiographic changes of the vegetation. Sematophyllaceae accounted for 19% of the taxa in lowland forest, Meteoriaceae for 10% of the taxa in montane forests, and Dicranaceae for 18% of the taxa in upper montane forests. Taxa with broad Neotropical distributions (40% of the total taxa) are important elements in all the forests, while taxa restricted to Brazil comprise the second most important element in upper montane and montane forests.
Resumo:
Above-ground litter production is one of the most accessible ways to estimate ecosystem productivity, nutrient fluxes and carbon transfers. Phenological patterns and climatic conditions are still not fully explained well for tropical and subtropical forests under less pronounced dry season and non-seasonal climates, as well as the interaction of these patterns with successional dynamics. Monthly litterfall was estimated for two years in a 9 to 10 year old secondary alluvial Atlantic Rain forest. Total litterfall was higher in the site with more developed vegetation (6.4 ± 1.2 ton ha-1 year-1; 95% confidence interval) as compared to the site with less developed vegetation (3.0 ± 1.0 ton ha-1 year-1). The monthly production of 11 litter fractions (eight fractions comprising the leaf litter of the seven main species of the community and other species; reproductive parts, twigs £ 2 cm diameter, and miscellaneous material) were correlated with meteorological variables making possible to identify three patterns of deposition. The main pattern, dominated by leaf-exchanging species, consisted of a cycle with the highest litterfall at the beginning of the rainy season, preceding by basically three months the peaks of the annual cycles of rainfall and temperatures. Other two patterns, dominated by brevi-deciduous species, peaked at the end of the rainy season and at the end of the non-rainy season. Tropical and subtropical dry forests that present the highest leaf fall gradually earlier than rain forests (as the studied sites) are possibly related to the start of senescence process. It seems that such process is triggered earlier by a more severe hydric stress, besides other factors linked to a minor physiological activity of plants that result in abscission.
Resumo:
Aulonemia aristulata (Döll) McClure is a lignified bamboo species endemic to Brazil. This species occurs in southeastern forests and can reach high density at forest edges, dominating the understory of canopy-disturbed forest patches. The goal of this study was to describe the flowering period, floral biology, fruiting and seedling recruitment of A. aristulata in natural conditions in two areas located in a segment of the Atlantic Forest. Data on the morphology of the synflorescences and florets, timing and sequence of the anthesis events and floral visitors were recorded. Natural pollinators (open pollination or control) as well as spontaneous self-pollination were also checked. Pollen viability was estimated using the acetocarmine technique. Aulonemia aristulata is monocarpic (semelparous) with gregarious flowering. All culms in both studied areas blossomed and fruited between August and November 2007, dying subsequently between December 2007 and April 2008. Two types of synflorescences and flowers were observed: terminal with bisexual and protandric florets, with the anthesis lasting for 3-4 days; and axillary, with morphologically bisexual, but functionally female, florets and anthesis lasting for 3-4 days. The latter were also observed in the rhizome of plants whose aerial portion had been removed. The presence of axillary synflorescences with pistillate flowers is described here for the first time in Aulonemia species. Moreover, this is the first report of gynomonoecy in woody bamboo. Fruiting from bisexual florets under natural conditions (35%) was superior to that obtained from bagged synflorescences (11.5%). Fruiting from functional female florets was around 20%. Pollen viability was on the average of 90%. The results suggest that Aulonemia aristulata is anemophilous. The massive bamboo seedling recruitment observed after dieback with the ability to colonize open areas could promote the regeneration of Aulonemia aristulata.
Resumo:
The cotyledons of Hymenaea courbaril store large amounts of xyloglucan, a cell wall polysaccharide that is believed to serve as storage for the period of seedling establishment. During storage mobilisation, xyloglucan seems to be degraded by a continuous process that starts right after radicle protrusion and follows up to the establishment of photosynthesis. Here we show evidence that events related to the hydrolases activities and production (α-xylosidase, β-galactosidase, β-glucosidase and xyloglucan endo-β-transglucosilase) as well as auxin, showed changes that follow the diurnal cycle. The period of higher hydrolases activities was between 6pm and 6am, which is out of phase with photosynthesis. Among the enzymes, α-xilosidase seems to be more important than β-glucosidase and β-galactosidase in the xyloglucan disassembling mechanism. Likewise, the sugars related with sucrose metabolism followed the rhythm of the hydrolases, but starch levels were shown to be practically constant. A high level of auxin was observed during the night, what is compatible with the hypothesis that this hormone would be one of the regulators of the whole process. The probable biological meaning of the existence of such a complex control mechanism during storage mobilisation is likely to be related to a remarkably high level of efficiency of carbon usage by the growing seedling of Hymenaea courbaril, allowing the establishment of very vigorous seedlings in the tropical forest.
Resumo:
The objectives of this study were to identify anthophilous butterflies on psychophilous flowers of four Asteraceae species in an Atlantic Forest fragment in Viçosa, Minas Gerais State, Southeastern Brazil, and to determine whether there are species in common with other lepidopteran inventories of the Southeastern and Midwestern regions of Brazil. It is the first inventory of anthophilous butterflies of a semideciduous forest fragment in Zona da Mata, State of Minas Gerais. A total of 108 species were recorded, representing the fourth largest lepidopteran survey in this State. The results demonstrated that Asteraceae species may be important tools for monitoring anthophilous butterflies. The similarity with other inventories ranged from 1 to 92.55%. Fifteen species were reported for the first time in the State of Minas Gerais, and among them, Melanis alena and Thisbe irenea were observed in this study only.
Resumo:
Light and soil water availability may limit carbon uptake of trees in tropical rainforests. The objective of this work was to determine how photosynthetic traits of juvenile trees respond to variations in rainfall seasonality, leaf nutrient content, and opening of the forest canopy. The correlation between leaf nutrient content and annual growth rate of saplings was also assessed. In a terra firme rainforest of the central Amazon, leaf nutrient content and gas exchange parameters were measured in five sapling tree species in the dry and rainy season of 2008. Sapling growth was measured in 2008 and 2009. Rainfall seasonality led to variations in soil water content, but it did not affect leaf gas exchange parameters. Subtle changes in the canopy opening affected CO2 saturated photosynthesis (A pot, p = 0.04). Although A pot was affected by leaf nutrient content (as follows: P > Mg > Ca > N > K), the relative growth rate of saplings correlated solely with leaf P content (r = 0.52, p = 0.003). At present, reduction in soil water content during the dry season does not seem to be strong enough to cause any effect on photosynthesis of saplings in central Amazonia. This study shows that leaf P content is positively correlated with sapling growth in the central Amazon. Therefore, the positive effect of atmospheric CO2 fertilization on long-term tree growth will depend on the ability of trees to absorb additional amount of P
Resumo:
ABSTRACT The objective of this work was to evaluate the dynamics of decomposition process of chopped secondary forest system, previously enriched with legumes Inga velutina Willd. and Stryphnodendron pulcherrimum (Willd.) Hochr. and the contribution of this process to the nutrient input to the cultivation of corn and bean under no-tillage. The experimental design was a randomized block, split plot with four replications. The plots were two species (I. velutina and S. pulcherrimum) and the subplots were seven times of evaluation (0, 7, 28, 63, 189, 252, 294 days after experiment installation). There was no difference (p ≥ 0.05) between the secondary forest systems enriched and no interaction with times for biomass waste, decomposition constant and half-life time. The waste of S. pulcherrimum trees had higher (p < 0.05) C/N ratio than that I. velutina. However, this one was higher (p < 0.05) in lignin content. Nevertheless, the dynamics of residue decomposition was similar. The corn yield was higher (p < 0.05) in cultivation under I.velutina waste. Meanwhile, the beans planted after corn, shows similar (p > 0.05) yield in both areas, regardless of the waste origin.
Resumo:
ABSTRACT Soils of tropical regions are more weathered and in need of conservation managements to maintain and improve the quality of its components. The objective of this study was to evaluate the availability of K, the organic matter content and the stock of total carbon of an Argisol after vinasse application and manual and mechanized harvesting of burnt and raw sugarcane, in western São Paulo.The data collection was done in the 2012/2013 harvest, in a bioenergy company in Presidente Prudente/SP. The research was arranged out following a split-plot scheme in a 5x5 factorial design, characterized by four management systems: without vinasse application and harvest without burning; with vinasse application and harvest without burning; with vinasse application and harvest after burning; without vinasse application and harvest after burning; plus native forest, and five soil sampling depths (0-10 10-20, 20-30, 30-40, 40-50 cm), with four replications. In each treatment, the K content in the soil and accumulated in the remaining dry biomass in the area, the levels of organic matter, organic carbon and soil carbon stock were determined. The mean values were compared by Tukey test. The vinasse application associated with the harvest without burning increased the K content in soil layers up to 40 cm deep. The managements without vinasse application and manual harvest after burning, and without vinasse application with mechanical harvesting without burning did not increase the levels of organic matter, organic carbon and stock of total soil organic carbon, while the vinasse application and harvest after burning and without burning increased the levels of these attributes in the depth of 0-10 cm.