98 resultados para Traditional Chinese Medicine (Atractylis Chinensis DC)
Resumo:
We have observed that several plants used popularly as anti-snake venom show anti-inflammatory activity. From the list prepared by Rizzini, Mors and Pereira some species have been selected and tested for analgesic activity (number of contortions) and anti-inflammatory activity (Evans blue dye diffusion - 1% solution) according to Whittle's technique (intraperitoneal administration of 0.1 N-acetic acid 0.1 ml/10 g) in mice. Previous oral administration of a 10% infusion (dry plant) or 20% (fresh plant) corresponding to 1 or 2 g/Kg of Apuleia leiocarpa, Casearia sylvestris, Brunfelsia uniflora, Chiococca brachiata, Cynara scolymus, Dorstenia brasiliensis, Elephantopus scaber, Marsypianthes chamaedrys, Mikania glomerata and Trianosperma tayuya demonstrated analgesic and/or anti-inflammatory activities of varied intensity
Resumo:
(1) Pseudolaric acids - Novel diterpenes, Pseudolaric acid A, B, C and D were isolated from Pseudolarix kaempferi Gorden (pinaceae). Their structures were assigned by spectroscopic data and chemical correlations. In the contineous studies, the absolute configurations, the conformations in the solutions, the framentation mechanisms of MS and assigments of all NMR spectral signals were also reported. They showed the antifungal and cytotoxic activities. (2) Daphnane diterpenes - In the further studies on the plants of Thymelaeaceae, besides 10 known diterpenes, 16 new daphnane diterpenes were isolated from Daphne genkwa, D. tangutica, D. giraldii, Wikstroemie chamaedaphne. They showed the antifertilities activities. (3) Tripterygium diterpenes 14 new diterpenes were isolated from Triperygium wilfordii, T. regeli and T. hypoglaucum. Some of them showed the antitumor activities. The CD spectra showed that A/B ring of all compoundshave trans configuration as same as tripdiolide and triptolide determined by X-ray diffraction (4) Pregnane glycosides from Marsdenia koi - Two new pregnane glycosides marsdenikoiside A and marsdenikoiside B which can terminate the early pregnancy were isolated from Marsdeia koi. Their structures were elucidated by hydrolysis and spectroscopic methods.
Resumo:
Glycosides are the bioactive components of many famous Chinese medicines. Here reported are some bioactive glycosides we discovered from Chinese medicines in recent years. (1) Pheolic glycosides from Chinese medicines: Gastrodia elata, acontium austroynanense and Helicia erratica, three bioactive phenolic glycosides were discovered and two of them have been developed into new drugs. (2) Terpenoidal glycosides: a) Monoterpenoid: the sweroside from Swertia mollensis has been developed intro an anti-hepatitis drug; b) Diterpenoid: Phlomis betonicoides contains sweet glycoides; c) Triterpenoid: many biologically active triterpenoid glycosides were isolated from Panax plants and Siraitia grosvenorii. (3) Steroidal glycosides: a) C21-steroid: Cynanchum otophyllum and C. atratrum contain anti-epilepsy and-tumor glycosides; b) C27-steroid Hemostatic saponins were found in Paris polyphylla.
Resumo:
The trypanosome evolution workshop, a joint meeting of the University of Exeter and the London School of Hygiene and Tropical Medicine, focused on topics relating to trypanosomatid and vector evolution. The meeting, sponsored by The Wellcome Trust, The Special Programme for Research and Training in Tropical Disease of World Health Organization and the British Section of the Society of Protozoologists, brought together an international group of experts who presented papers on a wide range of topics including parasite and vector phylogenies, molecular methodology and relevant biogeographical data.
Resumo:
The Bernhard Nocht Institute (BNI) is a four months younger and much smaller sibling of the Instituto Oswaldo Cruz. It was founded on 1 October 1900 as an Institut für Schiffs- und Tropenkrankheiten (Institute for Maritime and Tropical Diseases) and was later named after its founder and first director Bernhard Nocht. Today it is the Germany's largest institution for research in tropical medicine. It is a government institution affiliated to the Federal Ministry of Health of Germany and the Department of Health of the State of Hamburg. As the center for research in tropical medicine in Germany the BNI is dedicated to research, training and patient care in the area of human infectious diseases, which are of particular relevance in the tropics. It is the primary mission of the BNI to develop means to the control of these diseases. Secondary missions are to provide expertise for regional and national authorities and to directly and indirectly improve the health care for national and regional citizens in regard to diseases of the tropics.
Resumo:
The global malaria situation has scarcely improved in the last 100 years, despite major advances in our knowledge of the basic biology, epidemiology and clinical basis of the disease. Effective malaria control, leading to a significant decrease in the morbidity and mortality attributable to malaria, will require a multidisciplinary approach. New tools - drugs, vaccine and insecticides - are needed but there is also much to be gained by better use of existing tools: using drugs in combination in order to slow the development of drug resistance; targeting resources to areas of greatest need; using geographic information systems to map the populations at risk and more sophisticated marketing techniques to distribute bed nets and insecticides. Sustainable malaria control may require the deployment of a highly effective vaccine, but there is much that can be done in the meantime to reduce the burden of disease.
Resumo:
The Instituto Venezolano de Investigaciones Cientificas (IVIC) is a government-funded multidisciplinary academic institution dedicated to research, development and technology in many areas of knowledge. Biomedical projects and publications comprise about 40% of the total at IVIC. In this article, we present an overview of some selected research and development projects conducted at IVIC which we believe contain new and important aspects related to malaria, ancylostomiasis, dengue fever, leishmaniasis and tuberculosis. Other projects considered of interest in the general area of tropical medicine are briefly described. This article was prepared as a small contribution to honor and commemorate the centenary of the Instituto Oswaldo Cruz.
Resumo:
Immunology has contributed to biomedical education in many important ways since the creation of scientific medicine in the last quarter of the 19th century. Today, immunology is a major area of biomedical research. Nevertheless, there are many basic problems unresolved in immunological activities and phenomena. Solving these problems is probably necessary to devise predictable and safe ways to produce new vaccines, treat allergy and autoimmune diseases and perform safe transplants. This challenge involves not only technical developments but also changes in attitude, of which the most fundamental is to abandon the traditional stimulus-response perspective in favor of more "systemic" views. Describing immunological activities as the operation of a complex multiconnected network, raises biological and epistemological issues not usually dealt with in biomedical education. Here we point to one example of systemic approaches. A new form of immunoblot (Panama blot), by which the reaction of natural immunoglobulins with complex protein mixtures may be analyzed by a special software and multivariate statistics, has been recently used to characterize human autoimmune diseases. Our preliminary data show that Panama blots can also be used to characterize global (systemic) immunogical changes in chronic human parasitic diseases, such as malaria and schistosomiasis mansoni, that correlate with the clinical status.