152 resultados para Sowing.
Resumo:
In Cerrado soils under grazing, changes occur in physical attributes, such as increased density, decreasing on the size of water stable aggregates, and macroporosity reduction. Thus, the aim of this study was to study the effect of compaction on the establishment of two forages. It was adopted a completely randomized design with three replications, in 2 x 4 factorial design, and two forages (Xaraés grass and Marandu grass), and four levels of compaction (soil densities of 1.0, 1.2, 1.4, and 1.6 Mg m-3). The following variables were evaluated 48 days after sowing: tiller population, plant height, dry matter production of shoots and components, leaf and stem, as well as the root dry mass. The stem dry mass decreased with soil density in a similar manner for both forages. It was observed that the leaf dry mass and shoots dry mass of Xaraés grass remained constant in the levels of soil compaction, not adjusting to any regression model. The establishment of Xaraés grass has not been negatively affected by compaction, which may be suitable for situations where there may be layers that restrict the growth of different forages.
Resumo:
It was compared the performance of the metering mechanism of corn seeds (Zea mays) in direct seeding in an area of 200 ha, a property in Piraí do Sul, State of Paraná - PR, in Brazil. It was seeded 4 maize hybrids, 50 ha of each, with seeds of different sieves. The experiment was conducted in a randomized block design (RBD), with 3 treatments and 9 repetitions for each corn hybrid. The treatments were the pneumatic seed of metering mechanisms, horizontal perforated disc with and without ramp®. The plots were 40 m² and were distributed at the early, middle and late sowing. The variables analyzed in each corn hybrid were initial population, faulty spacing, multiple spacing, acceptable spacing, and yield components. As there were no significant differences in the variables, it was concluded that the quality of seeding with different systems of distribution was similar in the different sieves of distributed corn seeds.
Resumo:
This study evaluates the impacts of climate change on the agricultural zoning of climatic risk in maize crop cultivated in the Northeastern of Brazil, based on the Intergovernmental Panel on Climate Change (IPCC) reports. The water balance model, combined with geospatial technologies, was used to identify areas of the study region where the crops could suffer yield restrictions due to climate change. The data used in the study were the time series of rainfall with at least 30 years of daily data, crop coefficients, potential evapotranspiration and duration of the crop cycle. The scenarios of the increasing of air temperature used in the simulations were of 1.5ºC, 3ºC and 5ºC. The sowing date of maize crop from January to March appears to be less affected by warming scenarios than the sowing in November and December or April and May.
Resumo:
The aim of this study was to evaluate the possible impacts caused in the soil and in the percolate in lysimeters of drainage with application of different rates of swine wastewater (SW) during the cycle of soybean culture and to assess the productivity of it. The experiment was conducted at the Agricultural Engineering Experimental Center of UNIOESTE. The soil was classified as typical Distroferric Red Latosol. There were twenty-four drainage lysimeters in the area in which the soybean was cultivated, cultivar CD 214. Four SW depths (0; 100; 200 and 300 m³ ha-1) were applied to the soil seven days before the sowing in a single application combined with two mineral fertilizations in the sowing (with and without recommended fertilization during sowing), and three repetitions per treatment. It was realized three collections of percolate in each experimental portion, the first was conducted 40 days after sowing (DAS); the second at 72 DAS, and the third at the end of crop cycle (117 DAS). It was evaluated in the percolate the pH, calcium, magnesium, potassium, phosphorus, and total nitrogen. Based on the results, it was possible to observe that the level of K, P and N in the soil increased according tothe increase of SW rates. The levels of K and P in the percolate were higher for higher rates of SW. The productivity was not influenced by the application of SW or by fertilization.
Resumo:
This research aims at studying spatial autocorrelation of Landsat/TM based on normalized difference vegetation index (NDVI) and green vegetation index (GVI) of soybean of the western region of the State of Paraná. The images were collected during the 2004/2005 crop season. The data were grouped into five vegetation index classes of equal amplitude, to create a temporal map of soybean within the crop cycle. Moran I and Local Indicators of Spatial Autocorrelation (LISA) indices were applied to study the spatial correlation at the global and local levels, respectively. According to these indices, it was possible to understand the municipality-based profiles of tillage as well as to identify different sowing periods, providing important information to producers who use soybean yield data in their planning.
Resumo:
In Brazil, the best results in milk production are found in the state of Paraná. Such results are reached through genetic selection of the animals and management of their diets, in which whole plant corn silage is widely used. Aiming the silage quality, it was evaluated the influence of dry matter content of the corn culture as forage and the harvester adjustments on the fragment size of whole plant corn silage. The fragment size of two corn hybrids silage (SPEED and 2B688) was evaluated using a 5x3 factorial, with 4 repetitions. The first factor was the harvest time of the plants (105, 108, 112, 118, and 123 days after sowing (DAS)), which determines the forage dry matter (DM) content. The second factor was the harvester adjustments (2, 6.5 and 11mm of theoretical fragment length (TFL)). The DM content did not affect the average fragment size of 2B688. For SPEED, however, the real fragment size decreased as the maturation of plants increased. The conclusion is that the DM content and harvester adjustments can affect the real fragment sizes, according to different plant genotypes. The alterations of the harvester adjustments resulted in different fragment sizes, however, it were different from those indicated by the manufacturer.
Resumo:
This study aimed to propose methods to identify croplands cultivated with winter cereals in the northern region of Rio Grande do Sul State, Brazil. Thus, temporal profiles of Normalized Difference Vegetation Index (NDVI) from MODIS sensor, from April to December of the 2000 to 2008, were analyzed. Firstly, crop masks were elaborated by subtracting the minimum NDVI image (April to May) from the maximum NDVI image (June to October). Then, an unsupervised classification of NDVI images was carried out (Isodata), considering the crop mask areas. According to the results, crop masks allowed the identification of pixels with greatest green biomass variation. This variation might be associated or not with winter cereals areas established to grain production. The unsupervised classification generated classes in which NDVI temporal profiles were associated with water bodies, pastures, winter cereals for grain production and for soil cover. Temporal NDVI profiles of the class winter cereals for grain production were in agree with crop patterns in the region (developmental stage, management standard and sowing dates). Therefore, unsupervised classification based on crop masks allows distinguishing and monitoring winter cereal crops, which were similar in terms of morphology and phenology.
Resumo:
Corn cropping for silage, due to the plant material exportation, intercropping with forage provides greater ground cover and straw formation for the Direct Planting System (DPS) continuity. The objective of this study was to evaluate corn production for silage in DPS intercropped with four forages (Urochloa brizantha cv. Marandu, U. ruziziensis cv. Ruziziensis, Panicum maximum cv. Tanzânia and P. maximum cv. Áries). We applied three sowing methods (in row together with corn fertilizer; by no-till sowing simultaneously to corn sowing and at V4 corn stage) and corn without intercropping. The experiment was conducted in autumn/ winter of 2010, in Selvíria - MS, in a randomized block design in factorial arrangement (4 x 3 + 1) and 4 replications. For corn, we evaluated plant height, basal stem diameter, initial and final stand and silage production and for forage dry matter production. Morphological characteristics and corn yield were not affected by intercropping when compared to sole corn crop. Forage dry matter production sown in corn row with fertilizer is a highlight, which in addition to providing greater productivity, harnesses the operation during sowing.
Resumo:
Aiming to evaluate the use of sugarcane industry waste such as byproducts from vinasse concentration process, it was assessed the organomineral fertilizer BIOFOM (concentrated vinasse, filter cake, boiler ash, soot from chimneys and supplemented with mineral fertilizers). The study included characterization and agronomic potential analysis of a test plant (corn), by noting the differences between mineral fertilizers and BIOFOM fertilization until 45 days after sowing. The technology traditionally used to produce BIOFOM was based on vinasse evaporation with high heat transfer coefficients. It was observed that the technology, which can be formulated according to the needs of any crop, could be used in many cases as mineral fertilizer. Therefore, the use of this organomineral fertilizer reduces waste generation of sugarcane industry.
Resumo:
Vegetation cover on soil acts positively in maintaining temperature and soil moisture, yet, it has been imposing specific operational conditions on seeders. The objective of this study was to evaluate performance of different mechanisms regarding straw mobilization, employed in a no-till seeder. The experimental area was conducted on clayey soil under no-tillage with a large quantity of sorghum residue. The experiment was established in a randomized block design, as the treatments consisted of a combination of two mechanisms at front of the furrow opener composed of cutting disc and row cleaners, and three mechanisms behind the seed furrower, covering discs prototype model M1, Spider and commercial model, with the combination of cutting disc and Spider model not being evaluated. We assessed the coverage permanence on soil index, vegetation mass on surface and inside the line. The treatment containing the row cleaner mechanism efficiently removed straw from the surface of sowing line as well as the return one acted on straw replacement. It was identified that use of the cutting disc at the front of seeder contributed to the increase of straw installation inside the line, three times more than in the row cleaner system when operating individually. Covering mechanism with row cleaners reduced straw inside the line and kept line covering similar to treatment of cutting disc operating alone.
Resumo:
ABSTRACT Several authors have been questioned the desiccation interval between the coverage plants and sowing plants for the soybean crop. Therefore, this study aimed to evaluate the desiccation time of the spring sorghum as a predecessor crop for summer soybean and then for autumn bean, focusing on the straw formation for maintenance of the no-tillage system and to evaluate the yield of soybeans and beans grain, as well as analyzing the interference of sorghum straw in these cultures. The experiment was developed in the Teaching and Research Farm of FE/UNESP located in Ilha Solteira/SP where it was used an experimental design of randomized blocks with five treatments and six repetitions. The treatments consisted of five different intervals between sorghum desiccation and soybean sowing (being with D7 - Drying sorghum seven days before the soybean sowing; and successively for D14, D21, D28 and D35). In order to analyze the results, it was used the Tukey test for a 10% level of significance and the statistical program called Sisvar. The "Cober Crop" sorghum exerted influence on soybean yield but this effect was not lasting for the bean crop in succession to the soybeans.
Resumo:
Imazapyr has been used to control stump sprouting in stand of Eucalyptus plantations, where herbicide is applied to the tree trunk before cutting. The herbicide is applied exclusively on the stump to be killed, but little is known about the final fate of the molecule. Imazapyr exudation via roots of eucalypt grown in soil as the substrate was evaluated under greenhouse conditions. Different herbicide doses (0.000, 0.375, 0.750, 1.125, 1.500, and 3.000 kg ha-1 a.i.) were applied on the aerial parts of 8-month-old Eucalyptus grandis clonal seedlings, cultivated in pots with 18.0 dm³ of soil. Forty days after this treatment, the eucalypt plants were cut and a lateral opening in the containers was made and the plants inclined 90º, with plants sensitive to herbicide presence (sorghum and cucumber) sown into the openings along the exposed soil surface. After 15-day sowing, toxicity symptoms on the shoots as well as the shoot and root system dry biomass of the bio-indicators were evaluated. The results suggest that eucalypt roots do exude imazapyr, and/or its metabolites, at concentrations high enough to cause toxicity to the bio-indicators. Toxicity effects were observed in all plants sown along the exposed soil profile of the container, with higher intensity at higher doses.
Resumo:
This study was carried out to investigate the efficiency of several herbicides under field conditions, by post-emergence application onto the entire area, their effect on the control of weeds in young coffee plantations and commercial coffee and bean intercropping system, as well as on both crops. Seedlings of Coffea arabica cv. Red Catuaí with four to six leaf pairs were transplanted to the field and treated according to conventional agronomic practices. A bean and coffee intercropping system was established by sowing three lines of beans in the coffee inter-rows. At the time the herbicides were sprayed, the coffee plants had six to ten leaf pairs; the bean plants, three leaflets; and the weeds were at an early development stage. Fluazifop-p-butyl and clethodim were selective for coffee plants and controlled only Brachiaria plantaginea and Digitaria horizontalis efficiently. Broad-leaved weeds (Amaranthus retroflexus, Bidens pilosa, Coronopus didymus, Emilia sonchifolia, Galinsoga parviflora, Ipomoea grandifolia, Lepidium virginicum, and Raphanus raphanistrum) were controlled with high efficiency by sole applications of fomesafen, flazasulfuron, and oxyfluorfen, except B. pilosa, C. didymus, and R. raphanistrum for oxyfluorfen. Sequential applications in seven-day intervals of fomesafen + fluazifop-p-butyl, or clethodim, and two commercial mixtures of fomesafen + fluazifop-p-butyl simultaneously controlled both types of weed. Cyperus rotundus was only controlled by flazasulfuron. Except for fluazifop-p-butyl and clethodim, all herbicide treatments caused only slight injuries on younger coffee leaves. However, further plant growth was not impaired and coffee plant height and stem diameter were therefore similar in the treatments, as evaluated four months later. Fomesafen, fluazifop-p-butyl, and clethodim, at sole or sequential application, and the commercial mixtures of fomesafen + fluazifop-p-butyl were also highly selective for bean crop; thus at doses recommended for bean crop, these herbicides may be applied to control weeds in coffee and bean intercropping systems by spraying the entire area.
Resumo:
Phytoremediation, the use of plants to decontaminate soils and water resources from organic pollutants such as herbicides, is economically and environmentally a promising technique applied in many areas, including agriculture. The objective of this work was to evaluate the development of bean plants cultivated in the field, in soil with different levels of trifloxysulfuron-sodium contamination, following cultivation of two green manure species, as well as to evaluate the possibility of recontamination of the area by such herbicide with the straw permanence on the soil. The experiment was carried out in Coimbra, MG, Brazil, on a sandy clayey Red - Yellow Argisol from March to November 2003. Four levels of soil contamination with trifloxysulfuron-sodium (0.00; 3.75; 7.50; and 15.00 g ha-1) were used as well as the following five types of cultivation prior to bean sowing in the area after herbicide application: black velvet beans (Stizolobium aterrimum) followed by removal of straw; S. aterrimum, followed by permanence of straw; jack bean (Canavalia ensiformis), followed by removal of straw; C. ensiformis followed by permanence of straw; and without prior cultivation, weed-free (weeded control). The leguminous plants were kept in the area for 65 days, cut close to the soil, and with its aerial part left or not on the surface of the experimental plot, depending on the treatment. Fifteen days after the species were cut, bean was sown in the area. At 45 days after emergence (DAE) of the bean plants, plant height and dry mass of the aerial part were evaluated. Grain productivity was determined during harvest. Height, dry matter of the aerial part and grain productivity of the bean plants, cultivated in an area previously contaminated with trifloxysulfuron-sodium at any of the levels tested, were higher with prior cultivation of S. aterrimum or C. ensiformis. At the lowest level of herbicide contamination, prior cultivation of C. ensiformis was found to be more efficient than that of S. aterrimum in mitigating the harmful effects of trifloxysulfuron-sodium on bean grain production. The permanence of the straw of the green manure species during the bean cycle did not harm the development of the plants or caused culture productivity losses, indicating that straw permanence in the area does not promote recontamination of the area.
Resumo:
Intercropping combined with competitive maize cultivars can reduce the use of herbicides to control weeds. The objective of this work was to evaluate the effects of intercropping cowpea and maize, as well as hand-weeding on maize morphology and yield. The experimental design was in randomized complete blocks, with treatments arranged in split-plots and five replications. The plots consisted of four maize cultivars (BA 8512, BA 9012, EX 4001, EX 6004) and the split-plots consisted of the following treatments: no-weeding; twice hand-weeding (20 and 40 days after sowing); and intercropping with cowpea ('Sempre Verde' cultivar), both maize and cowpea sown at the same time. The variables evaluated were: maize fresh green ears and grain yield; characteristics of internodes, leaves, tassels, ears, grains; plant height and ear insertion height; number of weed plants and species; fresh and dry biomass of weed species and cowpea. Ten weed species were outstanding during the experiment, many of them from the Poaceae family. No interactions were found between weed control method and maize cultivars for most variables evaluated; and plants from hand-weeded split-plots showed superior mean values compared to plants from non-weeded and intercropped split-plots, both not differing from each other. The cowpea was inefficient in controlling weed, reducing the maize yields and not producing any grain. The maize cultivars 'BA 8512' and 'BA 9012 showed the highest mean green ear yield, and the highest grain yield in hand-weeded, no-weeded and intercropped split-plots. On the other hand, the maize cultivar 'EX 6004' showed such high means only in no-weeded and intercropped split-plots. 'EX 4001 presented the worst means in these variables for hand-weeded, no-weeded ant intercropped split-plots.