109 resultados para Soil-binding plants


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project aimed to relate the control efficiency of ACCase inhibiting herbicides applied post-emergence to Digitaria horizontalis plants under different soil water contents. The experiments were conducted in a greenhouse, with the application of three different herbicides (fluazifop-p-butyl, haloxyfop-methyl, and sethoxydim + mineral oil Assist). The experimental design used for each herbicide was completely randomized, with four replications, consisting of a 3 x 4 factorial, with the combination of water management strategies (-0.03, -0.07 and -1.5 MPa) and four doses of these products (100%, 50%, 25%, and 0% of the recommended dose). Herbicide application was made at two vegetative stages, 4-6 leaves and 2-3 tillers. The visual phytotoxicity evaluations were performed at 14 days after application and the plant dry weight at the end of the study was evaluated. The control efficiency was not affected by water management strategies when applied to the recommended dose of the herbicides in early stages of plant development (4-6 leaf stage). In late applications (2-3 tiller stage) the plants held under drought stress showed less phytotoxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil properties can influence weed community composition and weed density agricultural area. Knowing this relationship would allow to choose the best strategy for the control of such plants. This study aimed to investigate the correlation between weed density and chemical and physical attributes of soil in three areas (UCO, USC, and UPA) for commercial sugarcane cultivation in Campos dos Goytacazes, RJ. Grids of 40 m x 40 m were established in the areas, and soil samples were collected at the intersection points for physical and chemical analysis and evaluation of the soil seed bank (SSB), followed by a phyto-sociological survey of the weeds present. Samples were collected during two periods: February/March and June/July, 2010. SSB presented the greatest number of species per vegetation evaluated in the two sampling periods. Clay content had a positive effect leading to greater weed density in all areas (UCO, USC and UPA) in at least one of the densities (0-10 and 10-20 cm). On the other hand, sand content, when significant, presented a negative correlation with plant density in all the SSB areas analyzed. The pH negatively influenced the density of the species found through the phyto-sociological survey at USC and UPA. Cyperus rotundus, dominant in all areas, correlated positively with phosphorus, potassium, and clay content and negatively with pH and high sand content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, one of the biggest challenges faced by organic no-tillage farming is weed control. Thus, the use of cropping practices that help in the control of weeds is extremely important. The objective of this study was to evaluate population density and level of weed infestation in an organic no-tillage corn cropping system under different soil covers. The experiment was conducted in a randomized block design with six repetitions and five treatments, consisting of three soil covers in an organic no-tillage system, and an organic and a conventional system, both without soil cover. The treatments with soil cover used a grass species represented by the black oat, a leguminous species represented by the white lupine, and intercropping between both species. Corn was sown with spacing of 1.0 m between rows and 0.20 m between plants, using the commercial hybrid AG 1051. Infestation in corn was evaluated at stages V5 and V10, and weed density was evaluated at stage V5. The use of black oat straw alone or intercropped with white lupine, in the organic no-tillage corn cropping system, reduced the percentage of weed infestation and absolute weed density. Management-intensive systems and systems without soil cover showed higher relative densities for species Oxalis spp., Galinsoga quadriradiata and Stachys arvensis. The species Cyperus rotundus showed the highest relative density on organic no-tillage corn cropping systems. Black oat straw in the organic no-tillage cropping system limited the productive potential of corn.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technology that employs genetic modifications brought a significant increase in the utilization of glyphosate. Transgenic soybean has been suffering injury, even though it possesses a resistance mechanism to glyphosate. Currently, there are only a few studies on the dynamics of glyphosate in transgenic soybean planted in soils with different textures interacting with phosphorus concentrations. This study focused on assessing the effects of glyphosate in transgenic soybean plants on different types of soil and at different phosphorus levels. The experimental design was completely randomized, in factorial design: 2 x 6 x 3, that being 2 soil types, 6 doses of glyphosate and 3 levels of phosphorus, and four replications. Plants were cultivated for thirty days in pots with two types of soil, one being clayey (Red-Yellow Latosol) and the other sandy (Quartzarenic Neosol). They received one, two, and three times the maintenance dose of fertilization of phosphorus, corresponding to: 170, 250 and 330 kg of P2O5 ha-1 to QN, and 380, 460 and 540 kg P2O5 ha-1 to RYL, respectively. Glyphosate was applied at six different doses: 0, 1,200, 2,400, 12,000, 60,000 and 120,000 g ha-1 of active ingredient. Plant height, a and b chlorophyll, and shoot were lower for the plants that received lower doses of glyphosate, regardless of the type of soil. Greater availability of phosphorus and lower amount of glyphosate used in Quartzarenic Neosol soil provided for less phytointoxication symptoms in transgenic soybean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The competition between weeds and crops is a topic of great interest, since this interaction can cause heavy losses in agriculture. Despite the existence of some studies on this subject, little is known about the importance of soil microorganisms in the modulation of weed-crop interactions. Plants compete for water and nutrients in the soil and the ability of a given species to use the available resources may be directly affected by the presence of some microbial groups commonly found in the soil. Arbuscular mycorrhizal fungi (AMF) are able to associate with plant roots and affect the ability of different species to absorb water and nutrients from the soil, promoting changes in plant growth. Other groups may promote positive or negative changes in plant growth, depending on the identity of the microbial and plant partners involved in the different interactions, changing the competitive ability of a given species. Recent studies have shown that weeds are able to associate with mycorrhizal fungi in agricultural environments, and root colonization by these fungi is affected by the presence of other weeds or crops species. In addition, weeds tend to have positive interactions with soil microorganisms while cultures may have neutral or negative interactions. Competition between weeds and crops promotes changes in the soil microbial community, which becomes different from that observed in monocultures, thus affecting the competitive ability of plants. When grown in competition, weeds and crops have different behaviors related to soil microorganisms, and the weeds seem to show greater dependence on associations with members of the soil microbiota to increase growth. These data demonstrate the importance of soil microorganisms in the modulation of the interactions between weeds and crops in agricultural environments. New perspectives and hypotheses are presented to guide future research in this area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herbicides used in Clearfield(r) rice system may persist in the environment, damaging non-tolerant crops sown in succession and/or rotation. These damages vary according to soil characteristics, climate and soil management. The thickness of the soil profile may affect carryover effect; deeper soils may allow these molecules to leach, reaching areas below the roots absorption zone. The aim of this study was to evaluate the effect of the thickness of soil profile in the carryover of imazethapyr + imazapic on ryegrass and non-tolerant rice, sown in succession and rotation to rice, respectively. Lysimeters of different thicknesses (15, 20, 30, 40, 50 and 65 cm) were constructed, where 1 L ha-1 of the imazethapyr + imazapic formulated mixture was applied in tolerant rice. Firstly, imidazolinone-tolerant rice was planted, followed by ryegrass and non-tolerant rice in succession and rotation, respectively. Herbicide injury, height reduction and dry weight of non-tolerant species were assessed. There was no visual symptoms of herbicide injury on ryegrass sown 128 days after the herbicide application; however it causes dry weight mass reduction of plants. The herbicides persist in the soil and cause injury in non-tolerant rice, sown 280 days after application, and the deeper the soil profile, the lower the herbicides injury on irrigated rice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor (L.) Moench) and maize (Zea mays L.) on the development and diversity of arbuscular mycorrhizal fungi (AMF) from an agrosystem was investigated. Soil collected from an agricultural field where maize had been grown was inserted into sowing holes, under the seeds of peanut, sorghum and maize those were subsequently grown in sterilised quartz sand separately in plastic boxes for five months. After this period, collections of roots and rhizospheric soil were made to evaluate the percentages of root colonization (RC), number of spores (NS) and species of AMF. Peanut showed the highest average values for RC and NS: 24.5% and 547.8/100 g of soil, respectively. Maize had an average RC of 19.7% and 415.2 spores/100g soil. Sorghum showed the lowest values: 15.9% for average RC and 349.8 spores/100 g soil. A total of fourteen species of AMF were identified. Seven species were identified from peanut rhizospheres, Entrophospora colombiana being the most abundant and frequent. In sorghum rhizospheres, twelve species were found, Glomus geosporum was the dominant taxon in terms of number of spores and frequency. Ten species were detected in maize with Acaulospora longula being the most abundant and the most frequent. It was observed that peanut was the best plant for promoting the sporulation of AMF, while sorghum favoured the establishment of most AMF species, followed by maize.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sugarcane is an important agricultural product of Brazil, with a total production of more than 500 million tons. Knowledge of the bacterial community associated with agricultural crops and the soil status is a decisive step towards understanding how microorganisms influence crop productivity. However, most studies aim to isolate endophytic or rhizosphere bacteria associated with the plant by culture-dependent approaches. Culture-independent approaches allow a more comprehensive view of entire bacterial communities in the environment. In the present study, we have used this approach to assess the bacterial community in the rhizosphere soil of sugarcane at different times and under different nitrogen fertilization conditions. At the high taxonomic level, few differences between samples were observed, with the phylum Proteobacteria (29.6%) predominating, followed by Acidobacteria (23.4%), Bacteroidetes (12.1%), Firmicutes (10.2%), and Actinobacteria (5.6%). The exception was the Verrucomicrobia phylum whose prevalence in N-fertilized soils was approximately 0.7% and increased to 5.2% in the non-fertilized soil, suggesting that this group may be an indicator of nitrogen availability in soils. However, at low taxonomic levels a higher diversity was found associated with plants receiving nitrogen fertilizer. Bacillus was the most predominant genus, accounting for 19.7% of all genera observed. Classically reported nitrogen-fixing and/or plant growth-promoting bacterial genera, such as Azospirillum, Rhizobium, Mesorhizobium, Bradyrhizobium, and Burkholderia were also found although at a lower prevalence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the study was to characterize annual ryegrass seed population dynamics, managed for natural re-sowing, in no til systems in rotation with soybean, in different chronosequences An area was cultivated for two years with soybean, left as fallow land for the next two years and then cultivated again with soybean for the next two years. The four chronosequences represented different management periods, two with soybean (6 and 8 years old) and the other two resting (3 and 9 years old). Soil samples were taken every month during one year and divided into two depths (0-5 and 5-10 cm). Vegetation dynamics were also evaluated (number of plants, inflorescences and seedlings). Soil seed bank (SSB) dynamics showed structural patterns in time, with a "storage period" in summer, an "exhausting period" during autumn and a "transition period" in winter and spring. Pasture establishment by natural re-sowing was totally dependent on the annual recruitment of seeds from the soil. The influence of the management practices on the SSB was more important than the number of years that these practices had been implemented. Places where soybean was sown showed the largest SSBs. Most of the seeds overcame dormancy and germinated at the end of the summer and beginning of the autumn, showing a typically transitory SSB, but with a small proportion of persistent seeds

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduction in leaf area in corn plants during reproduction changes physiological metabolism and consequently the accumulation of dry matter in grains. The aim of this work was to study changes in agronomic characteristics caused by defoliation in corn during the reproduction phase. The experiment was carried out in Uberlândia, Minas Gerais state, in the agricultural year 2007/2008. The experiment was arranged in a randomized block design, consisting of seven treatments: control without defoliation, removal of two apical leaves, removal of four apical leaves, removal of all leaves above spike, removal of four intermediate leaves, removal of all leaves below spike, and removal of all plant leaves, with five repetitions. The genotype used for the evaluations was hybrid NB 7376. Defoliation was carried out when plants were at the growth stage R2. The variables assessed were: yield, density of spikes and corncobs, root resistance and stem integrity. When all leaves above the spike were removed, grain yield was reduced by 20%. Corncob density, stem integrity and root resistance to uprooting were also affected. Spike density was only affected when all plant leaves were removed. The leaf area remaining physiologically active above the spike was found to be most efficient in terms of grain yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humic substances isolated from soil organic matter had been used as stimulators of plant metabolism. Arabidopsis thaliana (L.) Heynh. with only five chromosomes, short cycle and size, is an important model to evaluate the physiological effects of these substances, which are qualitatively and quantitatively influenced by morphogenesis, mineralogy and chemistry of soils. The objective of this study was to evaluate the ambience effects on bioactivity of humic acids. A and B horizons of four typical soils of the North Fluminense were sampled. After isolation and purification, humic acids were applied to plants in increasing concentrations. The number and length of lateral roots and main root length were evaluated and, subsequently, the concentrations of maximum stimulation were determined by dose-response curves and regression equations. The results showed that more stable humic acids isolated from soil in less advanced stages of weathering, high activity clay and high base saturation resulted in better physiological stimulants for Arabidopsis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the productive performance of broccoli under different top-dressing organic fertilizations. The experiment was conducted under protected cultivation, in a completely randomized design with four replications, with two plants per experimental unit. Broccoli seedlings were produced in a commercial substrate in styrofoam trays. The seedlings were transplanted to plastic pots containing 10.0 L of substrate made up of subsoil and organic compost at the ratio of 3:1 (v/v), respectively, which is equivalent to about 20.0 t ha-1 of organic compost at planting. After seedling establishment, the top-dressing fertilization treatments were applied: gliricidia biomass associated or not with liquid biofertilizer of cattle manure to the soil and bokashi. Two control treatments were established: one with mineral fertilization recommended for the crop and the other without top-dressing fertilization. The broccoli production was evaluated (commercial standard). Plants that received mineral fertilizer were more productive, however, they were not significantly different (p>0.05), by Dunnet test, from the plants fertilized with 2.5 t ha-1 gliricidiabiomass (dry mass) associated with liquid biofertilizer (2.0 L m-2) applied to soil. Top-dressing fertilizations with only gliricidia, at 2.5 and 5.0 t ha-1 of biomass (dry mass), resulted in no significant increase in production of broccoli inflorescence. The use of bokashi in addition to gliricidia biomass and liquid biofertilizer reduced the efficiency of the fertilization compared with plants that received only gliricidia and liquid biofertilizer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fungal diseases are important factors limiting common bean yield. White mold is one of the main diseases caused by soil pathogens. The objective of this study was to quantify the distribution of a fungicide solution sprayed into the canopy of bean plants by spectrophotometry, using a boom sprayer with and without air assistance. The experiment was arranged in a 2 x 2 x 2 factorial (two types of nozzles, two application rates, and air assistance on and off) randomized block design with four replications. Air assistance influenced the deposition of solution on the bean plant and yield increased significantly with the increased rate of application and air assistance in the boom sprayer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coffee cultivation via central-pivot fertigation can lead to fertilizer losses by soil profile internal drainage when water application is excessive and soils have low water retention and cation adsorption capacities. This study analyses the deep water losses from the top 1 m sandy soil layer of east Bahia, Brazil, cultivated with coffee at a high technology level (central-pivot fertigation), using above normal N fertilizer rates. The deep drainage (Q) estimation is made through the application of a climatologic water balance (CWB) program having as input direct measures of irrigation and rainfall, climatological data from weather stations, and measured soil water retention characteristics. The aim of the study is to contribute to the understanding of the hydric regime of coffee crops managed by central-pivot irrigation, analyzing three scenarios (Sc): i) rainfall only, ii) rainfall and irrigation full year, and iii) rainfall and irrigation dry season only. Annual Q values for the 2008/2009 agricultural year were: Sc i = 811.5 mm; Sc ii = 1010.5 mm; and Sc iii = 873.1 mm, so that the irrigation interruption in the wet season reduced Q by 15.7%, without the appearance of water deficit periods. Results show that the use of the CWB program is a convenient tool for the evaluation of Q under the cited conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavy metals have been accumulating in Brazilian soils, due to natural processes, such as atmospheric deposition, or human industrial activities. For certain heavy metals, when in high concentrations in the soil, there is no specific extractant to determine the availability of these elements in the soil. The objective of the present study was to evaluate the availability of Cd, Cu, Fe, Mn, Pb and Zn for rice and soybeans, using different chemical extractants. In this study we used seven soil samples with different levels of contamination, in completely randomized experimental design with four replications. We determined the available concentrations of Cd, Cu, Fe, Mn, Pb and Zn extracted by Mehlich-1, HCl 0.1 mol L-1, DTPA, and organic acid extractants and the contents in rice and soybeans, which extracts were analyzed by ICP-OES. It was observed that Mehlich-1, HCl 0.1 mol L-1 and DTPA extractants were effective to assess the availability of Cd, Cu, Pb and Zn for rice and soybeans. However, the same was not observed for the organic acid extractant.