160 resultados para Sex characteristics
Resumo:
OBJECTIVE: To identify characteristics of the hospitalizations due to ischemic heart disease (IHD) made by the Single Health System -- "Sistema Único de Saúde (SUS) in Brazil from 1993 to 1997. METHODS: The information used came from records of permissions for hospitalization due to IHD (diseases codified from 410 to 414 by the International Disease Classification -- 9th Revision) furnished by the data bank DATASUS. The material studied was classified according to age, sex and length of hospitalization of the patients, and expenses to the system for IHD. RESULTS: IHD represents 1.0% of total hospitalizations. Angina pectoris was the most frequent type, occurring in 53.3% of the cases, followed by acute myocardial infarct (26.6%). This later was more frequent in men and angina in women . The majority of patients with IHD stayed hospitalized from 5 to 8 days. In the years of 1997 the expenses due to hospital treatment for IHD reach to 0.01% of Brazil's Gross Internal Product. In the studied period (1993-1997), IHD was responsible by 1.0% of hospitalizations, however it was 3.3% of the expenses of SUS. CONCLUSION: IHD is an important cause of hospitalization by the SUS; it has a rather high cost, indicating the need for preventive measures aimed at reducing exposure to risk factors and to decrease the incidence of this group of diseases in the nation.
Resumo:
OBJECTIVE: To assess by Doppler echocardiography the structural and functional alterations of rat heart with surgical induced extensive myocardial infarction. METHODS: Five weeks after surgical ligature of the left coronary artery, 38 Wistar-EPM rats of both sexes, 10 of them with extensive infarction, undergone anatomical and functional evaluation by Doppler echocardiography and then euthanized for anatomopathological analysis. RESULTS: Echocardiography was 100% sensible and specific to anatomopathological confirmed extensive miocardial infarction. Extensive infarction lead to dilatation of left ventricle (diastolic diameter: 0.89cm vs.0.64cm; systolic: 0.72cm vs. 0.33cm) and left atrium (0.55cm vs. 0.33cm); thinning of left ventricular anterior wall (systolic: 0.14cm vs. 0.23cm, diastolic: 0.11cm vs. 0.14cm); increased mitral E/ A wave relation (6.45 vs. 1.95). Signals of increased end diastolic ventricle pressure, B point in mitral valve tracing in 62.5% and signs of pulmonary hypertension straightening of pulmonary valve (90%) and notching of pulmonary systolic flow (60%) were observed in animals with extensive infarction. CONCLUSION: Doppler echocardiography has a high sensitivity and specificity for detection of chronic extensive infarction. Extensive infarction caused dilatation of left cardiac chambers and showed in Doppler signals of increased end diastolic left ventricular pressure and pulmonary artery pressure.
Resumo:
OBJECTIVE: To assess the intraobserver reliability of the information about the history of diagnosis and treatment of hypertension. METHODS: A multidimensional health questionnaire, which was filled out by the interviewees, was applied twice with an interval of 2 weeks, in July '99, to 192 employees of the University of the State of Rio de Janeiro (UERJ), stratified by sex, age, and educational level. The intraobserver reliability of the answers provided was estimated by the kappa statistic and by the coefficient of intraclass correlation (CICC). RESULTS: The general kappa (k) statistic was 0.75 (95% CI=0.73-0.77). Reliability was higher among females (k=0.88, 95% CI=0.85-0.91) than among males (k=0.62, 95% CI=0.59-0.65).The reliability was higher among individuals 40 years of age or older (k=0.79; 95% CI=0.73-0.84) than those from 18 to 39 years (k=0.52; 95% CI=0.45-0.57). Finally, the kappa statistic was higher among individuals with a university educational level (k=0.86; 95% CI=0.81-0.91) than among those with high school educational level (k=0.61; 95% CI=0.53-0.70) or those with middle school educational level (k=0.68; 95% CI=0.64-0.72). The coefficient of intraclass correlation estimated by the intraobserver agreement in regard to age at the time of the diagnosis of hypertension was 0.74. A perfect agreement between the 2 answers (k=1.00) was observed for 22 interviewees who reported prior prescription of antihypertensive medication. CONCLUSION: In the population studied, estimates of the reliability of the history of medical diagnosis of hypertension and its treatment ranged from substantial to almost perfect reliability.
Resumo:
OBJECTIVE: To assess whether female sex is a factor independently related to in-hospital mortality in acute myocardial infarction. METHODS: Of 600 consecutive patients (435 males and 165 females) with acute myocardial infarction, we studied 13 demographic and clinical variables obtained at the time of hospital admission through uni- and multivariate analysis, and analyzed their relation to in-hospital death. RESULTS: Females were older (p<0.001) and had a higher incidence of hypertension (p<0.001). Males were more frequently smokers (p<0.001). The remaining risk factors had a similar incidence among both sexes. All variables underwent uni- and multivariate analysis. Through univariate analysis, the following variables were found to be associated with in-hospital death: female sex (p<0.001), age >70 years (p<0.001), the presence of previous coronary artery disease (p=0.0004), previous myocardial infarction (p<0.001), infarction in the anterior wall (p=0.007), presence of left ventricular dysfunction (p<0.001), and the absence of thrombolytic therapy (p=0.04). Through the multivariate analysis of logistic regression, the following variables were associated with in-hospital mortality: female sex (p=0.001), age (p=0.008), the presence of previous myocardial infarction (p=0.02), and left ventricular dysfunction (p<0.001). CONCLUSION: After adjusting for all risk variables, female sex proved to be a variable independently related to in-hospital mortality in acute myocardial infarction.
Resumo:
OBJECTIVE: To assess the prevalence of intermittent claudication in the aged population of Bambuí, Brazil, and to identify the factors associated with this disease. METHODS: Population-based cross-sectional study of the aged population ( > or = 60 years of age) of Bambuí. Participants were interviewed and examined, after written consent. Intermittent claudication was defined based on a standardized questionnaire. Analysis was performed using multiple logistic regression. RESULTS: Of the 1,742 elderly living in Bambuí, 1,485 (85.2%) were enrolled in the study. Thirty-seven individuals (2.5%) with intermittent claudication were identified: 28 (1.9%) males and 9 (0.6%) females. Their age brackets were: 16 (1.08%) individuals between 60 and 69 years of age, 17 (1.15%) between 70 and 79 years, and 4 (0.27%) > or = 80 years. A significant association between intermittent claudication and the following characteristics was found: male sex (OR=5.1; CI 2.4-11.0), smokers (OR=3.1; CI 1.2-8.5), ex-smokers (OR=3.4; CI 1.3-8.7), and more than 2 hospital admissions in the last 12 months (OR=2.8; CI 1.1-7.2). CONCLUSION: Disease prevalence was similar to that of other countries. The association between intermittent claudication and smoking strengthens the significance of tobacco in peripheral artery disease pathogenesis. The association of intermittent claudication and a higher number of hospital admissions suggests greater morbidity in the elderly affected.
Resumo:
OBJECTIVE: To evaluate clinical and evolutive characteristics of patients admitted in an intensive care unit after cardiopulmonary resuscitation, identifying prognostic survival factors.METHODS: A retrospective study of 136 patients admitted between 1995 and 1999 to an intensive care unit, evaluating clinical conditions, mechanisms and causes of cardiopulmonary arrest, and their relation to hospital mortality.RESULTS: A 76% mortality rate independent of age and sex was observed. Asystole was the most frequent mechanism of death, and seen in isolation pulmonary arrest was the least frequent. Cardiac failure, need for mechanical ventilation, cirrhosis and previous stroke were clinically significant (p<0.01) death factors.CONCLUSION: Prognostic factors supplement the doctor's decision as to whether or not a patient will benefit from cardiopulmonary resuscitation.
Resumo:
OBJECTIVE: To assess the differences between young males and females after acute myocardial infarction. METHODS: We retrospectively studied 236 patients (54 females and 182 males) after acute myocardial infarction and during hospital stay assessed the following parameters: risk factors; the treatment used; the pattern of coronary artery obstruction; left ventricular ejection fraction; complications; and, using a logistic regression model, the factors related to the occurrence of reinfarction and death. RESULTS: No significant difference was observed between the sexes in risk factors, pattern of coronary artery obstruction, and left ventricular function. The time interval between symptom onset and treatment was longer in females (p=0.03), who underwent thrombolysis (p=0.01) and angioplasty (p=0.03) less frequently than males did, but not myocardial revascularization. Female sex (OR = 5.98) and diabetes (OR = 14.52) were independent factors related to the occurrence of reinfarction and death. CONCLUSION: Young males and females after acute myocardial infarction did not differ in coronary risk factors, and clinical and hemodynamic characteristics. Females had their treatment started later, and they underwent chemical thrombolysis and angioplasty less frequently than males did. Female sex and diabetes were related to the occurrence of reinfarction and death.
Resumo:
OBJECTIVE: To assess the clinical, electrocardiographic, and electrophysiologic characteristics of patients (pt) with intra-His bundle block undergoing an electrophysiologic study (EPS). METHODS: We analyzed the characteristics of 16 pt with second-degree atrioventricular block and symptoms of syncope or dyspnea, or both, undergoing conventional EPS. RESULTS: Intra-His bundle block was documented in 16 pt during an EPS. In 15 (94%) pt, the atrioventricular block was recorded in sinus rhythm; 4 (25%) pt had intra-His Wenckebach phenomenon, which correlated with Mobitz I (MI) atrioventricular block on the electrocardiogram. Seven (44%) pt had 2:1 atrioventricular block, 2 of whom were asymptomatic (12.5%). One (6%) pt had intra- and infra-His bundle block. Clinically, 11 (68%) pt had syncope or presyncope, 3 (18%) had dyspnea on exertion, and 2 (12.5%) were asymptomatic. Eight (50%) pt had bundle-branch block as follows: 4 (25%) pt had left bundle-branch block, and 4 (25%) had right bundle-branch block. Left anterosuperior divisional block was observed in 3 pt (19%), 2 of whom with associated right bundle-branch block. CONCLUSION: Intra-His bundle block was observed in 11% of the pt with second-degree atrioventricular block, syncope or presyncope, or both, it being the most frequent clinical presentation. Intra-His bundle block was more common in the elderly (> 60 years) and among females. The most frequent electrocardiographic presentations were second-degree Mobitz I or type 2:1 atrioventricular block.
Resumo:
OBJECTIVE: To identify risk factors for acute myocardial infarction during the postoperative period after myocardial revascularization. METHODS: This was a case-control study paired for sex, age, number, type of graft used, coronary endarterectomy, type of myocardial protection, and use of extracorporeal circulation. We assessed 178 patients (89 patients in each group) undergoing myocardial revascularization, and the following variables were considered: dyslipidemia, systemic hypertension, smoking, diabetes mellitus, previous myocardial revascularization surgery, previous coronary angioplasty, and acute myocardial infarction. RESULTS: Baseline clinical characteristics did not differ in the groups, except for previous myocardial revascularization surgery, prevalent in the case group (34 patients vs. 12 patients; p = 0.0002). This was the only independent predictor of risk for acute myocardial infarction in the postoperative period, based on a multivariate logistic regression analysis (p=0.0001). Mortality and the time of hospital stay of the case group were significantly higher (19.1% vs. 1.1%; p<0.001 and 15.7 days vs. 10.6 days; p<0.05 respectively) than those of the control. CONCLUSION: Only previous myocardial revascularization was an independent predictor of acute myocardial infarction in the postoperative period, based on multivariate logistic regression analysis.
Resumo:
Background: The incidence of obesity in children is increasing worldwide, primarily in urbanized, high-income countries, and hypertension development is a detrimental effect of this phenomenon. Objective: In this cross-sectional study, we evaluated the prevalence of excess weight and its association with high blood pressure (BP) in schoolchildren. Methods: Here 4,609 male and female children, aged 6 to 11 years, from 24 public and private schools in Maringa, Brazil, were evaluated. Nutritional status was assessed by body mass index (BMI) according to cutoff points adjusted for sex and age. Blood pressure (BP) levels above 90th percentile for gender, age and height percentile were considered elevated. Results: The prevalence of excess weight among the schoolchildren was 24.5%; 16.9% were overweight, and 7.6% were obese. Sex and socioeconomic characteristics were not associated with elevated BP. In all age groups, systolic and diastolic BP correlated with BMI and waist and hip measurements, but not with waist-hip ratio. The prevalence of elevated BP was 11.2% in eutrophic children, 20.6% in overweight children [odds ratio (OR), 1.99; 95% confidence interval (CI), 1.61-2.45], and 39.7% in obese children (OR, 5.4; 95% CI, 4.23-6.89). Conclusion: Obese and overweight children had a higher prevalence of elevated BP than normal-weight children. Our data confirm that the growing worldwide epidemic of excess weight and elevated BP in schoolchildren may also be ongoing in Brazil.
Resumo:
Background:Information about post-acute coronary syndrome (ACS) survival have been mostly short-term findings or based on specialized, cardiology referral centers.Objectives:To describe one-year case-fatality rates in the Strategy of Registry of Acute Coronary Syndrome (ERICO) cohort, and to study baseline characteristics as predictors.Methods:We analyzed data from 964 ERICO participants enrolled from February 2009 to December 2012. We assessed vital status by telephone contact and official death certificate searches. The cause of death was determined according to the official death certificates. We used log-rank tests to compare the probabilities of survival across subgroups. We built crude and adjusted (for age, sex and ACS subtype) Cox regression models to study if the ACS subtype or baseline characteristics were independent predictors of all-cause or cardiovascular mortality.Results:We identified 110 deaths in the cohort (case-fatality rate, 12.0%). Age [Hazard ratio (HR) = 2.04 per 10 year increase; 95% confidence interval (95%CI) = 1.75–2.38], non-ST elevation myocardial infarction (HR = 3.82 ; 95%CI = 2.21–6.60) or ST elevation myocardial infarction (HR = 2.59; 95%CI = 1.38–4.89) diagnoses, and diabetes (HR = 1.78; 95%CI = 1.20‑2.63) were significant risk factors for all-cause mortality in the adjusted models. We found similar results for cardiovascular mortality. A previous coronary artery disease diagnosis was also an independent predictor of all-cause mortality (HR = 1.61; 95%CI = 1.04–2.50), but not for cardiovascular mortality.Conclusion:We found an overall one-year mortality rate of 12.0% in a sample of post-ACS patients in a community, non-specialized hospital in São Paulo, Brazil. Age, ACS subtype, and diabetes were independent predictors of poor one‑year survival for overall and cardiovascular-related causes.
Resumo:
AbstractBackground:The relationship between psychiatric illness and heart disease has been frequently discussed in the literature. The aim of the present study was to investigate the relationship between anxiety, depression and overall psychological distress, and coronary slow flow (CSF).Methods:In total, 44 patients with CSF and a control group of 50 patients with normal coronary arteries (NCA) were prospectively recruited. Clinical data, admission laboratory parameters, and echocardiographic and angiographic characteristics were recorded. Symptom Checklist 90 Revised (SCL-90-R), Beck Depression Inventory (BDI), and Beck Anxiety Inventory (BAI) scales were administered to each patient.Results:The groups were comparable with respect to age, sex, and atherosclerotic risk factors. In the CSF group, BAI score, BDI score, and general symptom index were significantly higher than controls (13 [18.7] vs. 7.5 [7], p = 0.01; 11 [14.7] vs. 6.5 [7], p = 0.01; 1.76 [0.81] vs. 1.1[0.24], p = 0.01; respectively). Patients with CSF in more than one vessel had the highest test scores. In univariate correlation analysis, mean thrombolysis in myocardial infarction (TIMI) frame counts were positively correlated with BAI (r = 0.56, p = 0.01), BDI (r = 0.47, p = 0.01), and general symptom index (r = 0.65, p = 0.01). The psychiatric tests were not correlated with risk factors for atherosclerosis.Conclusion:Our study revealed higher rates of depression, anxiety, and overall psychological distress in patients with CSF. This conclusion warrants further studies.
Resumo:
AbstractBackground:Aerobic fitness, assessed by measuring VO2max in maximum cardiopulmonary exercise testing (CPX) or by estimating VO2max through the use of equations in exercise testing, is a predictor of mortality. However, the error resulting from this estimate in a given individual can be high, affecting clinical decisions.Objective:To determine the error of estimate of VO2max in cycle ergometry in a population attending clinical exercise testing laboratories, and to propose sex-specific equations to minimize that error.Methods:This study assessed 1715 adults (18 to 91 years, 68% men) undertaking maximum CPX in a lower limbs cycle ergometer (LLCE) with ramp protocol. The percentage error (E%) between measured VO2max and that estimated from the modified ACSM equation (Lang et al. MSSE, 1992) was calculated. Then, estimation equations were developed: 1) for all the population tested (C-GENERAL); and 2) separately by sex (C-MEN and C-WOMEN).Results:Measured VO2max was higher in men than in WOMEN: -29.4 ± 10.5 and 24.2 ± 9.2 mL.(kg.min)-1 (p < 0.01). The equations for estimating VO2max [in mL.(kg.min)-1] were: C-GENERAL = [final workload (W)/body weight (kg)] x 10.483 + 7; C-MEN = [final workload (W)/body weight (kg)] x 10.791 + 7; and C-WOMEN = [final workload (W)/body weight (kg)] x 9.820 + 7. The E% for MEN was: -3.4 ± 13.4% (modified ACSM); 1.2 ± 13.2% (C-GENERAL); and -0.9 ± 13.4% (C-MEN) (p < 0.01). For WOMEN: -14.7 ± 17.4% (modified ACSM); -6.3 ± 16.5% (C-GENERAL); and -1.7 ± 16.2% (C-WOMEN) (p < 0.01).Conclusion:The error of estimate of VO2max by use of sex-specific equations was reduced, but not eliminated, in exercise tests on LLCE.
Resumo:
In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.
Resumo:
Lucilia cuprina (Wiedemann, 1830) is a cosmopolite blowfly species of medical and veterinary importance because it produces myiasis, mainly in ovine. In order to evaluate the demographic characteristics of this species, survivorship curves for 327 adult males and 323 adult females, from generation F1 maintained under experimental conditions, were obtained. Entropy was utilized as the estimator of the survival pattern to quantify the mortality distribution of individuals as a function of age. The entropy values 0.216 (males) and 0.303 (females) were obtained. These results denote that, considering the survivorship interval until the death of the last individual for each sex, the males present a tendency of mortality in more advanced age intervals, in comparison with the females.