116 resultados para Root-cause
Resumo:
The experiment was conducted in an orchard located in University of Florida (Citrus Research and Education Center), Lake Alfred, Polk County, Florida, USA. The objective of this study was to evaluate the effects of water stress in root distribution of 'Valencia' orange tree on 'Swingle' citrumelo rootstock. Three treatments were imposed on the trees: 1) normal irrigation with microsprinklers, 2) no irrigation in winter (November through mid-March) and 3) rainfall exclusion by placing a water repelling fabric (Tyvek) under the trees. Trees in treatments 1 and 2 received normal rainfall during the winter, but treatment 3 received no rain. Normal irrigation was resumed on all treatments in mid March. Soil was collected using root auger head (0.09 m diameter and height 0.25 m) in two opposing quadrants (West and East at 3 horizontal distances from tree trunk (1, 2 and 3 m) and 4 depths (0.0-0.15; 0.15-0.30; 0.30-0.60 and 0.60-0.90 m). The results from root sampling showed that there was a significant difference in root distribution between irrigated treatment and non irrigated/non rainfall.
Resumo:
Irrigation with domestic sewage effluent (DSE) has been recommended by subsurface dripping, as it can obtain a high rate of irrigation efficiency and faster use of salts in comparison with other irrigation methods. The study aimed at evaluating the area, the length and the effective depth of the root system of sugarcane irrigated with DSE by subsurface drip system and with different irrigation rates at depths of 0.00-0.20, 0.20-0.40, 0.40-0.60 and 0.60-0.80m. The experiment was carried out in the municipality of Piracicaba, in the state of São Paulo (SP), Brazil, in a sugarcane area irrigated with DSE in a completely randomized blocks set up in furrows, with three replications and four treatments, which are: one area without irrigation (AWI) and three irrigated areas meeting 50% (T50%), 100% (T100%) and 200% (T200%) of the crop's water need between each round of irrigation. T100% and T200% provided smaller areas and lengths of roots in the two deepest layers, as compared to AWI and T50%, which stimulated the development of deeper roots due to the water stress. TWI, T100% and T200% presented 80% of the roots up to a depth of 0.40m and T50% treatment presented 76.43% of roots total.
Resumo:
The presence of microorganisms in dental structures with experimentally induced necrosis was evaluated. The materials were tested to evaluate their antimicrobial activity and tissue repair efficacy. Four dogs were used in this experiment, with a total of 64 roots of premolar teeth, divided into three groups. The root canals of Group I were filled with gutta-percha and zinc oxide/eugenol cement; Group II were filled with calcium hydroxide, and Group III were not filled. All animals were clinically and radiographically examined 15 days after surgery andthen again every subsequent 15 days until 120 days, when the teeth were extracted en bloc.Histopathological analysis showed inflammatory infiltration, cement and bone resorption andnecrotic tissue in the apical delta in different proportions. Histomicrobiological analysis showedthe presence of microorganisms inside the teeth structures, with different concentrationsaccording to the treatment used. There was statistical significance between the groups(p>0.05). Gutta-percha with zinc oxide/eugenol demonstrated good antimicrobial activity;calcium hydroxide was not efficient. The conclusion of this study is that gutta-percha withzinc oxide/eugenol is the better protocol for filling root canals in dogs.
Resumo:
Weeds have a negative influence on several fruit tree characteristics, such as yield, making it difficult to management practices in orchards. Alternative weed management methods, aiming to reduce the use of herbicides, have become attractive since herbicides are costly and cause environmental degradation. The use of cultivars with greater competitive ability against weeds has attracted international attention. The objective of this work was to evaluate the floristic composition and growth of weeds under the canopies of irrigated custard apple tree progenies. Twenty halfsibling progenies around three years of age were evaluated in a random block design with five replicates and four plants per plot. A circle with a 0.5 m² area was established around the trunk of each plant. Floristic composition, fresh matter, and dry matter mass of the above-ground part of the weeds, were evaluated in this area. Root collar and canopy diameters, as well as leaf area of the progenies were also evaluated. Fifty-eight weed species were recorded. The five weed families with the most species were Leguminosae, Convolvulaceae, Euphorbiaceae, Malvaceae and Sterculiaceae, in decreasing order. The number of weed species per plot ranged from 6 to 18, but there was no difference between the mean percentages of different weeds under the canopies of the progenies. The lowest weed fresh and dry matter masses occurred in progenies JG1 and SM8, respectively. There were no differences between progenies with regard to root collar diameter and leaf area; however, one of the lowest weed dry matter yields was observed under the canopy of progeny FE4, which showed the largest canopy diameter.
Resumo:
The effects of competition of six weed species on growth, nutrient concentration and nutrient content of coffee plant root system under greenhouse conditions were evaluated. Thirty days after coffee seedling transplantation into 12 L pots with soil level area of 6.5 dm². Weeds were transplanted or sowed in these pots, at densities of 0, 1, 2, 3, 4 and 5 plants per pot. The duration of competition (or weedy periods) from weed transplantation or emergence until plant harvesting, at the weed preflowering stage, were (in days): 77 (Bidens pilosa), 180 (Commelina diffusa), 82 (Leonurus sibiricus), 68 (Nicandra physaloides), 148 (Richardia brasiliensis) and 133 (Sida rhombifolia). Dry matter of coffee plants was linearly reduced with increasing B. pilosa and S. rhombifolia density, with pronounced effect of B. pilosa. C. diffusa was the only weed species whose increasing density in the pots did not diminish crop root dry matter. L. sibiricus, N. physaloides and R. brasiliensis reduced root dry matter of coffee plants by 75, 52 and 47%, respectively, as compared to the weed-free treatment, regardless of weed density. Under competition, even though weed species showed lower macronutrient concentration in the roots (except for P), they accumulated 4.2 (N), 12.3 (P), 4.3 (K), 5.5 (Ca), 7.6 (Mg) and 4.4 (S) times more nutrients in the roots than the coffee plants. Crop and weed nutrient concentration, as well as competition degrees greatly varied depending on both weed species and densities.
Resumo:
Laboratory and greenhouse experiments were conducted to evaluate the phytotoxic effect of black mustard extracts and root exudates on two crops: Trifolium alexandrinum and Triticum aestivum, and two weeds: Phalaris paradoxa and Sisymbrium irio. The seeds were treated with aqueous and ethanolic extracts and chloroform for eight days, or subjected to root exudates of just harvested mustard in a greenhouse for five weeks. High-performance liquid chromatography (HPLC) was used to quantify phytotoxins from plant tissues. Seed germination of P. paradoxa was reduced with the lowest concentration of the different extracts. However, the aqueous extract at 4% completely curtailed the germination of all the target species. In general, plant extracts had a concentration-dependent reduction of seedling growth of the target species. However, the ethanolic extract, at the lowest concentration, has stimulated the shoot length of both T. alexandrinum and T. aestivum, and the root length of the former. Mustard root exudates inhibited emergence and growth of the target species throughout the experiment. Ferulic and syringic acids were the dominant allelochemicals found when HPLC was used.
Resumo:
Weeds cause significant reduction in the irrigated rice crop yield. Cyperus esculentus (yellow nutsedge) is adapted to irrigate environment. Information on the competitive ability of the weed to the culture, and their environmental adaptation, are scarce. In this study, we sought to determine the initial growth and competitive ability of yellow nutsedge and irrigated rice, as a function of cultivar growth cycle. Initial growth and competition studies were conducted in a randomized complete design in a greenhouse in the agricultural year 2010/11. For the initial growth study, the treatments consisted of a factorial combination of a biotype of yellow nutsedge and two rice cultivars in the function of the vegetative cycle (BRS Querência: early cycle - IRGA 424: intermediate cycle) and six evaluation times (10, 20, 30, 40, 50, and 60 days after emergence). Were evaluated: plant height, leaf area, aboveground dry biomass and root dry biomass. In the competitive ability study in the replacement series, the cultivar BRS Querência (early cycle) and yellow nutsedge were utilized and tested in different proportions of competition (100:0, 75:25, 50:50, 25:75, and 0:100). Were evaluated leaf area and aboveground dry biomass. In general, rice cultivars have an adaptive value equivalent to yellow nutsedge. IRGA 424 cultivar has less height than weed, becoming the weed control more important in this cultivar. For rice crop, intraspecific competition is more important, whereas for the weed, interspecific competition is the most pronounced.
Resumo:
The irrigated rice production can be limited by various phytopathogenic agents, including root-knot nematodes (Meloidogyne spp.). Thus, the aim of this research was to check the host suitability of plant species most often found off-season and during rice cultivation, to root-knot nematode Meloidogyne graminicola, under two irrigation managements. Two experiments were conducted in a completely randomized design. In the first experiment seven plant species that occur in an area of rice cultivation, in fallow, off-season were evaluated. For the second experiment nine weed species infesting the irrigated rice culture were tested in rainfed and flooding conditions. The sixteen species, kept individually in pots with sterilized substrate, were inoculated with 5,000 eggs and second stage juveniles (J2) of nematode. BRS 410 IRGA rice plants inoculated with M.graminicola were used as control. Two months after inoculation, the root system of each plant was evaluated for number of galls and nematode reproduction factor. It was verified that the species of off-season of rice cultivation Sida rhombifolia, Raphanus raphanistrum, Spergula arvensis, Lotus corniculatus and Trifolium repens, and, during the cycle of rice cultivation, Aeschynomene denticulata, Leersia hexandra, are immune to nematode. The plant species off-season, Avena strigosa and Lolium multiflorum and of cultivation, Alternanthera philoxeroides, red rice, Echinochloa crusgalli, Cyperus difformis, Cyperus esculentus, Cyperus iria and Fimbristylis miliacea would behave as hosts of M.graminicola, mostly under rainfed conditions.
Resumo:
The competition between weeds and crops is a topic of great interest, since this interaction can cause heavy losses in agriculture. Despite the existence of some studies on this subject, little is known about the importance of soil microorganisms in the modulation of weed-crop interactions. Plants compete for water and nutrients in the soil and the ability of a given species to use the available resources may be directly affected by the presence of some microbial groups commonly found in the soil. Arbuscular mycorrhizal fungi (AMF) are able to associate with plant roots and affect the ability of different species to absorb water and nutrients from the soil, promoting changes in plant growth. Other groups may promote positive or negative changes in plant growth, depending on the identity of the microbial and plant partners involved in the different interactions, changing the competitive ability of a given species. Recent studies have shown that weeds are able to associate with mycorrhizal fungi in agricultural environments, and root colonization by these fungi is affected by the presence of other weeds or crops species. In addition, weeds tend to have positive interactions with soil microorganisms while cultures may have neutral or negative interactions. Competition between weeds and crops promotes changes in the soil microbial community, which becomes different from that observed in monocultures, thus affecting the competitive ability of plants. When grown in competition, weeds and crops have different behaviors related to soil microorganisms, and the weeds seem to show greater dependence on associations with members of the soil microbiota to increase growth. These data demonstrate the importance of soil microorganisms in the modulation of the interactions between weeds and crops in agricultural environments. New perspectives and hypotheses are presented to guide future research in this area.
Resumo:
A. peregrina var. falcata form mutualistic symbiosis with arbuscular mycorrhizal fungus. An anatomical and ultrastructural study was carried out to analyze some aspects of this simbiotic association as well as some root features. The results evidenced the presence of fibers with non-lignified thicked secondary walls in the stele and sparse papillae on root surface. A. peregrina var. falcata mycorrhizas presented features of Arum-type (intercellular hyphae) and Paris-type (extensive coils) arbuscular mycorrhiza. Their general appearance with extraradical hyphae, intracellular coils, intercellular hyphae and arbuscules, is in agreement with arbuscular mycorrhizas of several plants. The ultrastructural observations showed that in intercellular hyphae and arbuscules vacuoles were dominant and that in rough endoplasmatic reticulum and small vesicles seems to be associated with arbuscule senescence process.
Resumo:
Somatic embryogenesis was induced from cotyledon explants of eggplant cultured on MS medium supplemented with 54 µM NAA. Anatomical analysis of somatic embryo initiation and development was performed during the first four weeks. Proembryo formation was observed after the second day of culture, directly from perivascular cells or via pro-embryogenic masses derived from indeterminate meristematic masses (IMMs) originated in the vascular tissue. Those IMMs also gave rise to root primordia after 10 days of culture. The origin of embryos is discussed as well as the similarities between somatic embryogenesis and adventitious root formation.
Resumo:
The dynamics of forests subject to inundation appears to be strongly influenced by the frequency and intensity of natural disturbances such as flooding. In a late successional tidal floodplain forest near the Amazon port of Belém, Brazil, we tested this prediction by measuring seasonal patterns of phenology and litterfall in relation to two key variables: rainfall and tide levels. In addition, we estimated the root biomass and the annual growth of the forest community by measuring stem increments over time. Our results showed high correlations between phenological events (flowering and fruiting) and rainfall and tide levels, while correlations between litterfall and these variations were generally weaker. Contrary to our prediction, root biomass to 1 m depth showed no significant differences along the topographic gradient, and the root biomass at all topographic levels was low to intermediate compared with other neotropical forests. Both litterfall and total stem increment were high compared to other tropical forest, indicating the high productivity of this ecosystem.
Resumo:
The effect of crude xyloglucan (XG) preparations from jatobá (Hymenaea courbaril var. stilbocarpa (Hayne) Y. T. Lee & Langenh.) seeds on Arabidopsis thaliana (L.) Heynh. root system development was investigated. The XG extracts exerted a dual effect on root system development by slowing down root growth and improving lateral root formation. These observed morphological changes were not due to oligosaccharides that could be generated following hydrolysis of the XG polymers, since XG hydrolysate induced a drastic inhibition of the overall growth process of the Arabidopsis thaliana seedlings. Histochemical test of GUS gene expression assay performed on seven and 14-days-old transgenic Arabidopsis thaliana plants carrying the CycB1;1-GUS fusion indicated that the improvement of the lateral root development by jatobá XG extracts was not correlated with the expression of this cell cycle marker gene in the root system. A potential agricultural application of jatobá seeds XG extract is discussed.
Resumo:
Sapindus saponaria (soapberry) is a species that presents a great diversity of chemical compounds, such as saponins; however, few studies have examined the allelopathic effect of this species. Therefore, this study provides an evaluation of the allelopathic potential of aqueous extracts of the roots and mature leaves of S. saponaria on the germination of diaspores and seedlings growth of lettuce (Lactuca sativa) and onion (Allium cepa). The aqueous extract was prepared in the proportion of 100 g of dry plant material in 1,000 mL of distilled water (a concentration of 10% w v-1), and diluted with distilled water to 7.5, 5.0 and 2.5% concentrations. The mature leaf extracts caused delay and decrease in the germination process of the lettuce and onion diaspores, with inhibitory effect concentration-dependent, while the root extracts showed no allelopathic effects on the germination process. Both extracts caused abnormalities and inhibited the growth of shoot and root seedlings.
Resumo:
Seven days after transection of the sciatic nerve NADPH-diaphorase activity increased in the small and medium neurons of the dorsal root ganglia of the turtle. However, this increase was observed only in medium neurons for up to 90 days. At this time a bilateral increase of NADPH-diaphorase staining was observed in all areas and neuronal types of the dorsal horn, and in positive motoneurons in the lumbar spinal cord, ipsilateral to the lesion. A similar increase was also demonstrable in spinal glial and endothelial cells. These findings are discussed in relation to the role of nitric oxide in hyperalgesia and neuronal regeneration or degeneration.