131 resultados para PROTEIN ISOLATE
Resumo:
Phenotypic diversity has been described in the central repeated region of the circumsporozoite protein (CSP) from Plasmodium vivax. Two sequences VK210 (common) and VK247 (variant) have been found widely distributed in P. vivax isolates from several malaria endemic areas around the world. A third protein variant called P. vivax-like showing a sequence similar to the simian parasite P. simio-ovale has also been described. Here, using an immunofluorescent test and specific monoclonal antibodies, we assessed the presence of two of these protein variants (VK210 and VK247) in laboratory produced sporozoite. Both sequences were found in parasite isolates coming from different geographic regions of Colombia. Interestingly, sporozoites carrying the VK247 sequence were more frequently produced in Anopheles albimanus than sporozoites with the VK210 sequence. This difference in sporozoites production was statistically significant (p <0.05, Kruskal-Wallis); not correlation was found with parameters as the total number of parasites or gametocytes in blood from human donors used to feed mosquitoes. Previous studies in the same region have shown a higher prevalence of anti-VK210 antibodies which in theory may suggest their role in blocking the development of sporozoites carrying the CSP VK210 sequence.
Resumo:
The zinc finger motifs (Cys2His2) are found in several proteins playing a role in the regulation of transcripton. SmZF1, a Schistosoma mansoni gene encoding a zinc finger protein was initially isolated from an adult worm cDNA library, as a partial cDNA. The full sequence of the gene was obtained by subcloning and sequencing cDNA and genomic fragments. The collated gene sequence is 2181 nt and the complete cDNA sequence is 705 bp containing the full open reading frame of the gene. Analysis of the genome sequence revealed the presence of three introns interrupting the coding region. The open reading frame theoretically encodes a protein of 164 amino acids, with a calculated molecular mass of 18,667Da. The predicted protein contains three zinc finger motifs, usually present in transcription regulatory proteins. PCR amplification with specific primers for the gene allowed for the detection of the target in egg, cercariae, schistosomulum and adult worm cDNA libraries indicating the expression of the mRNA in these life cycle stages of S. mansoni. This pattern of expression suggests the gene plays a role in vital functions of different life cycle stages of the parasite. Future research will be directed to elucidate the functional role of SmZF1.
Resumo:
Humoral and cellular immune responses are currently induced against hepatitis C virus (HCV) core following vaccination with core-encoding plasmids. However, the anti-core antibody response is frequently weak or transient. In this paper, we evaluated the effect of different additives and DNA-protein combinations on the anti-core antibody response. BALB/c mice were intramuscularly injected with an expression plasmid (pIDKCo), encoding a C-terminal truncated variant of the HCV core protein, alone or combined with CaCl2, PEG 6000, Freund's adjuvant, sonicated calf thymus DNA and a recombinant core protein (Co.120). Mixture of pIDKCo with PEG 6000 and Freund's adjuvant accelerated the development of the anti-core Ab response. Combination with PEG 6000 also induced a bias to IgG2a subclass predominance among anti-core antibodies. The kinetics, IgG2a/IgG1 ratio and epitope specificity of the anti-core antibody response elicited by Co.120 alone or combined with pIDKCo was different regarding that induced by the pIDKCo alone. Our data indicate that the antibody response induced following DNA immunization can be modified by formulation strategies.
Resumo:
The great expansion in the number of genome sequencing projects has revealed the importance of computational methods to speed up the characterization of unknown genes. These studies have been improved by the use of three dimensional information from the predicted proteins generated by molecular modeling techniques. In this work, we disclose the structure-function relationship of a gene product from Leishmania amazonensis by applying molecular modeling and bioinformatics techniques. The analyzed sequence encodes a 159 aminoacids polypeptide (estimated 18 kDa) and was denoted LaPABP for its high homology with poly-A binding proteins from trypanosomatids. The domain structure, clustering analysis and a three dimensional model of LaPABP, basically obtained by homology modeling on the structure of the human poly-A binding protein, are described. Based on the analysis of the electrostatic potential mapped on the model's surface and conservation of intramolecular contacts responsible for folding stabilization we hypothesize that this protein may have less avidity to RNA than it's L. major counterpart but still account for a significant functional activity in the parasite. The model obtained will help in the design of mutagenesis experiments aimed to elucidate the mechanism of gene expression in trypanosomatids and serve as a starting point for its exploration as a potential source of targets for a rational chemotherapy.
Resumo:
A cell-free system from Plasmodium falciparum able to translate endogenous mRNA was used to determine the effect of artemisinin, chloroquine and primaquine on the protein synthesis mechanism of the parasite. The antimalarial drugs did not inhibit the incorporation of [³H] methionine into parasite proteins even at concentrations higher than the ones found to strongly inhibit the parasite growth. Results clearly indicate that these compounds do not have a direct effect on protein synthesis activity of P. falciparum coded by endogenous mRNA.
Resumo:
A study was undertaken to search for DNA recombinant Schistosoma mansoni proteins responsible for eliciting an antibody response from the host at a very early phase after infection. A S. mansoni adult worm cDNA expression library was screened using pooled sera from baboons with four weeks of infection. Based on their specific reactivity with the S. mansoni infected sera and no reactivity when tested against the pre-infection sera from the same baboons, four clones were selected for further studies. Sequence analysis revealed that they were homologous to the S. mansoni heat shock protein 70 (hsp70). The insert sizes of the four selected clones varied from 1150 to 2006 bp. The preliminary characterization for antibody reactivity against a panel of baboon sera showed that the longest clone was the most reactive, eight out of eight acute and three out of four chronic sera reacting positively to this clone. The shortest clone was the least reactive. Our results suggest that the S. mansoni hsp70 elicits an early and strong antibody response in baboons and that antibodies to this protein can be detected in chronically infected animals. Therefore S. mansoni hsp70 may be a valid target for immunodiagnosis. However further studies are needed to identify the portion of the hsp70 that best fits the requirements for a valuable diagnostic antigen.
Resumo:
Antigenic characterization of Anaplasma marginale isolates, by identifying conserved and variable epitopes of major surface proteins (MSP), is an important tool for vaccine development against this rickettsia. The B cell epitopes of A. marginale isolates from three microregions of the State of Pernambuco and one from the State of Mato Grosso do Sul, Brazil, were characterized by indirect fluorescent antibody technique (IFAT) and Western blot (WB) with 15 monoclonal antibodies (MAbs). The epitope recognized by MAb ANA22B1 (MSP-1a) was conserved by IFAT and WB (73-81 kDa). MSP-2 epitopes recognized by MAbs ANAO58A2 and ANAO70A2 were conserved by IFAT, while ANAO50A2 and ANA66A2 epitopes were polymorphic; in the WB, the MAbs ANAO50A2 and ANAO70A2 identified bands of 45 kDa only in the Pernambuco-Mata isolate. None of the isolates reacted with MAb ANAR75C2 (MSP-3). The MSP-4 epitope recognized by MAb ANAR76A1 was conserved by IFAT, as well as the MSP-5 epitope recognized by MAb ANAF16C1 by IFAT and WB (16 kDa). The MAbs ANAR17A6, ANAR83B3, ANAR94C1, ANAO24D5 and ANAR19A6 identified conserved epitopes by IFAT. MSP-1, MSP-2 and MSP-4, which previously showed partial protection in experimental trials, are also potential immunogens to be employed in Brazil, due to the B cell epitope conservation.
Resumo:
SEN virus (SENV) is a circular, single stranded DNA virus that has been first characterized in the serum of a human immunodeficiency virus type 1 (HIV-1)-infected patient. Eight genotypes of SENV (A-H) have been identified and further recognized as variants of TT virus (TTV) in the family Circoviridae. Here we describe the first genomic characterization of a SENV isolate (5-A) from South America. Using 'universal' primers, able to amplify most, if not all, TTV/SENV genotypes, a segment of > 3 kb was amplified by polymerase chain reaction from the serum of an HIV-1 infected patient. The amplicon was cloned and a 3087-nucleotide sequence was determined, that showed a high (85%) homology with the sequence of the Italian isolate SENV-F. Proteins encoded by open reading frames (ORFs) 1 to 4 consisted of 758, 129, 276, and 267 amino acids, respectively. By phylogenetic analysis, isolate 5-A was classified into TTV genotype 19 (phylogenetic group 3), together with SENV-F and TTV isolate SAa-38.
Resumo:
A ribosome association factor (AF) was isolated from the yeast Sacchharomyces cerevisiae. Partial amino acid sequence of AF was determined from its fragment of 25 kDa isolated by treating AF with 2-(2-nitrophenylsulfenyl)-3-methyl-3'-Bromoindolenine (BNPS-skatole). This sequence has a 86% identity to the product of the single-copy S. cerevisiae STM1 gene that is apparently involved in several events like binding to quadruplex and triplex nucleic acids and participating in apoptosis, stability of telomere structures, cell cycle, and ribosomal function. Here we show that AF and Stm1p share some characteristics: both bind to quadruplex and Pu triplex DNA, associates ribosomal subunits, and are thermostable. These observations suggest that these polypeptides belong to a family of proteins that may have roles in the translation process.
Resumo:
Trypanosoma evansi contains protein kinases capable of phosphorylating endogenous substrates with apparent molecular masses in the range between 20 and 205 kDa. The major phosphopolypeptide band, pp55, was predominantly localized in the particulate fraction. Anti-alpha and anti-beta tubulin monoclonal antibodies recognized pp55 by Western blot analyses, suggesting that this band corresponds to phosphorylated tubulin. Inhibition experiments in the presence of emodin, heparin, and 2,3-bisphosphoglycerate indicated that the parasite tubulin kinase was a casein kinase 2 (CK2)-like activity. GTP, which can be utilized instead of ATP by CK2, stimulated rather than inactivated the phosphorylation of tubulin in the parasite homogenate and particulate fraction. However, GTP inhibited the cytosolic CK2 responsible for phosphorylating soluble tubulin and other soluble substrates. Casein and two selective peptide substrates, P1 (RRKDLHDDEEDEAMSITA) for casein kinase (CK1) and P2 (RRRADDSDDDDD) for CK2, were recognized as substrates in T. evansi. While the enzymes present in the soluble fraction predominantly phosphorylated P1, P2 was preferentially labeled in the particulate fractions. These results demonstrated the existence of CK1-like and CK2-like activities primarily located in the parasite cytosolic and membranous fractions, respectively. Histone II-A and kemptide (LRRASVA) also behaved as suitable substrates, implying the existence of other Ser/Thr kinases in T. evansi. Cyclic AMP only increased the phosphorylation of histone II-A and kemptide in the cytosol, demonstrating the existence of soluble cAMP-dependent protein kinase-like activities in T. evansi. However, no endogenous substrates for this enzyme were identified in this fraction. Further evidences were obtained by using PKI (6-22), a reported inhibitor of the catalytic subunit of mammalian cAMP-dependent protein kinases, which specifically hindered the cAMP-dependent phosphorylation of histone II-A and kemptide in the parasite soluble fraction. Since the sum of the values obtained in the parasite cytosolic and particulate fractions were always higher than the values observed in the total T. evansi lysate, the kinase activities examined here appeared to be inhibited in the original extract.
Resumo:
The role of intracellular free polyamine (putrescine and spermidine) pools in multiple resistance to aminoglycoside antibiotics was investigated among in vitro selected kanamycin-resistant Escherichia coli J53 mutants expressing diminished oligopeptide-binding protein (OppA) levels and/or defective ornithine decarboxylase (ODC) activity. The results suggest that diminished OppA content, but not defective ODC activity expression, increased the relative concentration of free spermidine as compared to the wild type strain. Moreover, by adding exogenous polyamines or polyamine synthesis inhibitors to cultures with different mutant strains, a direct relationship between the intracellular OppA levels and resistance to kanamycin was revealed. Collectively these results further suggest a complex relation among OppA expression, aminoglycoside resistance and polyamine metabolism.
Resumo:
Formulations containing the entomopathogenic Bacillus thuringiensis serovar israelensis strain IPS-82 has been widely applied for mosquito control around the world. Strain IPS-82 is highly active against Aedes aegypti but less active against other well-known vectors such as Culex quinquefasciatus and Simulium spp. larvae. Eighteen strains of B. thuringiensis were isolated from Simulium pertinax larvae naturally occurring in rivers of Southeast Brazil with one demonstrating special toxic effects. Simulated field tests against S. pertinax larvae showed that the native Brazilian autoagglutinanting B. thuringiensis (LFB-FIOCRUZ 1035) has an LC50 at least 25 times lower than the standard IPS-82 strain. The same bacterial preparation was also tested against Ae. aegypti larvae in laboratory trials and the LC50 values obtained with LFB-FIOCRUZ 1035 were at least three times lower than the one for the IPS 82 strain. The results indicate that this strain is more toxic than the standard B. thuringiensis serovar israelensis (H14) in the two Dipteran species tested. It is noteworthy that differences between LC50 values were more pronounced in S. pertinax larvae, the source of the original isolation.
Resumo:
A polyhistidine-tagged recombinant tegumental protein Schistosoma japonicum very lowdensity lipoprotein binding protein (SVLBP) from adult Schistosoma japonicum was expressed in Escherichia coli. The affinity purified rSVLBP was used to vaccinate mice. The worm numbers and egg deposition recovered from the livers and veins of the immunized mice were 33.5% and 47.6% less than that from control mice, respectively (p<0.05). There was also a marked increase in the antibody response in vaccinated mice: the titer of IgG1 and IgG2a, IgG2b in the vaccinated group was significantly higher than that in the controls (>1:6,400 in total IgG). In a comparison of the reactivity of sera from healthy individuals and patients with rSVLBP, recognition patterns against this parasite tegumental antigen varied among different groups of the individuals. Notably, the average titres of anti-rSVLBP antibody in sera from faecal egg-negative individuals was significantly higher than that in sera from the faecal egg-positives, which may be reflect SVLBP-specific protection. These results suggested that the parasite tegumental protein SVLBP was a promising candidate for further investigation as a vaccine antigen for use against Asian schistosomiasis.
Resumo:
To increase blood safety Brazil introduced screening for anti-HBc among blood donors in 1993. There was a decrease in the hepatitis B virus (HBV) transmission, but this measure identified a great number of HBsAg-negative, anti-HBc-positive donors. Surveillance policy determines that contacts of HBV carriers should be screened to HBV markers, but there is no recommendation about how to guide contacts of HBsAg-negative, anti-HBc-positive donors. Aiming to evaluate whether the contacts of this group are at greater risk for HBV infection, a cross-sectional study was performed to compare prevalence of HBV infection between contacts of HBsAg-positive blood donors (group I) and contacts of HBsAg-negative, anti-HBc-positive donors (group II). Contacts were submitted to a questionnaire and blood tests for HBV markers. In group I (n = 143), 53 (37.1%) were anti-HBc-positive and 11 (7.7%) were HBsAg-positive. In group II (n = 111), there were 9 and 0.9%, respectively. HBV exposure was associated with group I, sexual activity, blood transfusion, being one of the donor's parents, and living for more than ten years with the donor. Regarding the families as sample units, it was more common to find at least one member with HBV markers (p < 0.05) among the families of group I compared to group II. Contacts of HBsAg-negative, anti-HBc-positive individuals presented a much lower risk of having already been exposed to HBV and there is no need to screen them for HBV in low to moderate prevalence populations.
Resumo:
The hepatitis A virus (HAV) HAF-203 strain was isolated from an acute case of HAV infection. The primary isolation of HAF-203 in Brazil and its adaptation to the FRhK-4 cell lineage allowed the production of large amounts of viral particles enabling molecular characterization of the first HAV isolate in Brazil. The aim of our study was to determine the nucleotide sequence of the HAF-203 strain genome, compare it to other HAV genomes and highlight its genetic variability. The complete nucleotide sequence of the HAF-203 strain (7472 nucleotides) was compared to those obtained earlier by others for other HAV isolates. These analyses revealed 19 HAF-specific nucleotide sequence differences with 10 amino acid substitutions. Most of the non-conservative changes were located at VP1, 2C, and 3D genes, but the 3B region was the most variable. The availability of HAF-203 complementary DNA was useful for the production of the recombinant VP1 protein, which is a major determinant of viral infectivity. This recombinant protein was shown by enzyme-linked immunoassay and blotting, to be immunogenic and resemble the native protein, therefore suggesting its value as a reagent for incorporation into diagnostic tests.