175 resultados para PARAMETERS CALIBRATION
Resumo:
The simultaneous determination of two or more active components in pharmaceutical preparations, without previous chemical separation, is a common analytical problem. Published works describe the determination of AZT and 3TC separately, as raw material or in different pharmaceutical preparations. In this work, a method using UV spectroscopy and multivariate calibration is described for the simultaneous measurement of 3TC and AZT in fixed dose combinations. The methodology was validated and applied to determine the AZT+3TC contents in tablets from five different manufacturers, as well as their dissolution profile. The results obtained employing the proposed methodology was similar to methods using first derivative technique and HPLC.
Resumo:
A method based on pyrohydrolysis was proposed for cement sample preparation and further chloride determination by spectrophotometry using flow injection analysis. Analytical parameters were evaluated and, under the selected conditions, the calibration curve was linear in the range of 0.2 to 10.0 µg mL-1 with r2 = 0.998. The limit of detection was5 µg g-1 of chloride and the relative standard deviation was less than 7%. The proposed pyrohydrolysis method is relatively simple and can be used for sample preparation for further spectrophotometric determination of low concentrations of chloride in cement.
Resumo:
In this work, a spectrophotometric methodology was applied in order to determine epinephrine (EP), uric acid (UA), and acetaminophen (AC) in pharmaceutical formulations and spiked human serum, plasma, and urine by using a multivariate approach. Multivariate calibration methods such as partial least squares (PLS) methods and its derivates were used to obtain a model for simultaneous determination of EP, UA and AC with good figures of merit and mixture design was in the range of 1.8 - 35.3, 1.7 - 16.8, and 1.5 - 12.1 µg mL-1. The 2nd derivate PLS showed recoveries of 95.3 - 103.3, 93.3 - 104.0, and 94.0 - 105.5 µg mL-1 for EP, UA, and AC, respectively.
Resumo:
The conventional curriculum of Analytical Chemistry undergraduate courses emphasizes the introduction of techniques, methods and procedures used for instrumental analysis. All these concepts must be integrated into a sound conceptual framework to allow students to make appropriate decisions. Method calibration is one of the most critical parameters that has to be grasped since most analytical techniques depend on it for quantitative analysis. The conceptual understanding of calibration is not trivial for undergraduate students. External calibration is widely discussed during instrumental analysis courses. However, the understanding of the limitations of external calibration to correct some systematic errors is not directly derived from laboratory examples. The conceptual understanding of other calibration methods (standard addition, matrix matching, and internal standard) is imperative. The aim of this work is to present a simple experiment using grains (beans, corn and chickpeas) to explore different types of calibration methods.
Resumo:
A method for the determination of trace amounts of palladium was developed using homogeneous liquid-liquid microextraction via flotation assistance (HLLME-FA) followed by graphite furnace atomic absorption spectrometry (GFAAS). Ammonium pyrrolidine dithiocarbamate (APDC) was used as a complexing agent. This was applied to determine palladium in three types of water samples. In this study, a special extraction cell was designed to facilitate collection of the low-density solvent extraction. No centrifugation was required in this procedure. The water sample solution was added to the extraction cell which contained an appropriate mixture of extraction and homogeneous solvents. By using air flotation, the organic solvent was collected at the conical part of the designed cell. Parameters affecting extraction efficiency were investigated and optimized. Under the optimum conditions, the calibration graph was linear in the range of 1.0-200 µg L-1 with a limit of detection of 0.3 µg L-1. The performance of the method was evaluated for the extraction and determination of palladium in water samples and satisfactory results were obtained. In order to verify the accuracy of the approach, the standard addition method was applied for the determination of palladium in spiked synthetic samples and satisfactory results were obtained.
Resumo:
Some aspects of the application of electrochemical impedance spectroscopy to studies of solid electrode / solution interface, in the absence of faradaic processes, are analysed. In order to perform this analysis, gold electrodes with (111) and (210) crystallographic orientations in an aqueous solution containing 10 mmol dm-3 KF, as supporting electrolyte, and a pyridine concentration varying from 0.01 to 4.6 mmol dm-3, were used. The experimental data was analysed by using EQUIVCRT software, which utilises non-linear least squares routines, attributing to the solid electrode / solution interface behaviour described by an equivalent circuit with a resistance in series with a constant phase element. The results of this fitting procedure were analysed by the dependence on the electrode potential on two parameters: the pre-exponential factor, Y0, and the exponent n f, related with the phase angle shift. By this analysis it was possible to observe that the pyridine adsorption is strongly affected by the crystallographic orientation of the electrode surface and that the extent of deviation from ideal capacitive behaviour is mainly of interfacial origin.
Resumo:
The possibility of using thiocyanate to determine iron(II) and/or iron(III) in water-acetone mixture has been re-examined as part of a systematic and comparative study involving metallic complexes of pseudohalide ligands. Some parameters that affect the complete oxidation of the ferrous cations, their subsequent complexation and the system stability have been studied to optimize the experimental conditions. Our results show the viability and potentiality of this simply methodology as an alternative analytical procedure to determine iron cations with high sensitivity, precision and accuracy. Studies on the calibration, stability, precision, and effect of various different ions have been carried out by using absorbance values measured at 480 nm. The analytical curve for the total iron determination obeys Beer's law (r = 0.9993), showing a higher sensitivity (molar absorptivity of 2.10x10(4) L cm-1 mol-1) when compared with other traditional systems (ligands) or even with the "similar" azide ion [1.53x10(4) L cm-1 mol-1, for iron-III/azide complexes, in 70% (v/v) tetrahydrofuran/water, at 396 nm]. Under such optimized experimental conditions, it is possible to determine iron in the concentration range from 0.5 to 2 ppm (15-65% T for older equipments, quartz cells of 1.00 cm). Analytical applications have been tested for some different materials (iron ores), also including pharmaceutical products for anemia, and results were compared with atomic absorption determinations. Very good agreement was obtained with these two different techniques, showing the potential of the present experimental conditions for the total iron spectrophotometric determinations (errors < 5%). The possibility of iron speciation was made evident by using another specific and auxiliary method for iron(II) or (III).
Resumo:
Stability constant (log beta) and thermodynamic parameters of Cd2+ complexes with sulfonamide and cephapirin were determined by Polarographic technique at pH = 7.30 ± 0.01 and µ = 1.0 M KNO3 at 250°C. The sulfonamides were sulfadiazine, sulfisoxazole, sulfamethaxazole, sulfamethazine, sulfathiazole, sulfacetamide and sulfanilamide used as primary ligands and cephapirin as secondary ligand. Cd2+ formed 1:1:1, 1:2:1 and 1:1:2 complexes. The nature of electrode processes were reversible and diffusion controlled. The stability constants and thermodynamic parameters (deltaG, deltaH and deltaS) were determined. The formation of the metal complexes has been found to be spontaneous, exothermic in nature, and entropically unfavourable at higher temperature.
Resumo:
The application of multivariate calibration techniques to multicomponent analysis by UV-VIS molecular absorption spectrometry is a powerful tool for simultaneous determination of several chemical species. However, when this methodology is accomplished manually, it is slow and laborious, consumes high amounts of reagents and samples, is susceptible to contaminations and presents a high operational cost. To overcome these drawbacks, a flow-batch analyser is proposed in this work. This analyser was developed for automatic preparation of standard calibration and test (or validation) mixtures. It was applied to the simultaneous determination of Cu2+, Mn2+ and Zn2+ in polyvitaminic and polymineral pharmaceutical formulations, using 4-(2-piridilazo) resorcinol as reagent and a UV-VIS spectrophotometer with a photodiode array detector. The results obtained with the proposed system are in good agreement with those obtained by flame atomic absorption spectrometry, which was employed as reference method. With the proposed analyser, the preparation of calibration and test mixtures can be accomplished about four hours, while the manual procedure requires at least two days. Moreover, it consumes smaller amounts of reagents and samples than the manual procedure. After the preparation of calibration and test mixtures, 60 samples h-1 can be carried out with the proposed flow-batch analyser.
Resumo:
The aim of this present work was to provide a more fast, simple and less expensive to analyze sulfur content in diesel samples than by the standard methods currently used. Thus, samples of diesel fuel with sulfur concentrations varying from 400 and 2500 mgkg-1 were analyzed by two methodologies: X-ray fluorescence, according to ASTM D4294 and by Fourier transform infrared spectrometry (FTIR). The spectral data obtained from FTIR were used to build multivariate calibration models by partial least squares (PLS). Four models were built in three different ways: 1) a model using the full spectra (665 to 4000 cm-1), 2) two models using some specific spectrum regions and 3) a model with variable selected by classic method of variable selection stepwise. The model obtained by variable selection stepwise and the model built with region spectra between 665 and 856 cm-1 and 1145 and 2717 cm-1 showed better results in the determination of sulfur content.
Resumo:
A quantitative analysis is made on the correlation ship of thermodynamic property, i.e., standard enthalpy of formation (ΔH fº) with Kier's molecular connectivity index(¹Xv),vander waal's volume (Vw) electrotopological state index (E) and refractotopological state index (R) in gaseous state of alkanes. The regression analysis reveals a significant linear correlation of standard enthalpy of formation (ΔH fº) with ¹Xv, Vw, E and R. The equations obtained by regression analysis may be used to estimate standard enthalpy of formation (ΔH fº) of alkanes in gaseous state.
Resumo:
ABSTRACT The productivity of Eucalyptus at plantations is increasing and has undergone a variety of research studies. Most research is dealing with simple dendrometric variables like the DBH (diameter at breast height) and tree height, or more complex variables including crown parameters or variables concerning photosynthesis. The root systems, however, have not been well analyzed yet. The objective of the study was to analyze the root system with a non-destructive method and to evaluate possible correlations with dendrometric variables of the tree (DBH, height, crown expansion). A small experimental plantation with 39 even-aged, 6-year-old trees of Eucalyptus grandis x urophylla has been investigated within this study. The results of the study show the highest correlation of the root areas with the crown expansion. In general, the root area shows a significantly bigger expansion in the eucalypt plantation than the tree crown, with a more homogeneous development.
Resumo:
The objective of this work was to determine the effect of environmental variables and supplementation levels on physiological parameters of Moxotó goats in confined and semi-confined rising systems, in the Brazilian semi-arid region. The semi-confined individuals were kept on a grass based diet during the day and arrested in the end of the afternoon. The confined animals were kept in a management center, receiving two diets composed by forage cactus and maniçoba hay into two different levels (0.5 and 1.5% of the body weight). Inside the management center and in the external environment the environmental comfort parameters were set high during the afternoon period characterizing a situation of thermal discomfort for the animals. During the morning the semi-confined animals presented an average respiratory frequency (69.5 mov min-1) and rectal temperature (39.5 ºC) higher than the confined ones (62.6 mov min-1 and 39.0 ºC, respectively). The confined and semi-confined animals were able to maintain their rectal temperature within normal limits, with increase in the cardiac beatings rate and respiratory frequency. The greater percentage of the used supplementations (1.5%) seemed to increase rectal temperature in the two studied rising systems.
Resumo:
The use of fertilizers and solid amendments in agriculture generates special interest for their effect on crop productivity, as well as for their environmental impact. The efficient use of these products demands knowing their physical and mechanical properties, the storing conditions effect and the operational characteristics of the metering systems used in the fertilizing equipment. In this context, the present study was developed with the purpose of evaluating the operational characteristics of different fertilizing metering systems and to determine the adequate metering system-product operational parameters, using powder lime, powder gypsum, granular 10-30-10 (N-P-K), and granular urea. Operational differences were established among four types of commercial fertilizer metering systems, including wire auger, star-shaped feed wheel, feed screw and ridged traction wheel. The study found that the unloading rate depends directly on the fertilizer metering system's rotating speed and is affected by particle size, repose angle, bulk density and moisture content of the applied product. The wire auger and star-shaped feed wheel metering systems were adequate for the distribution of powder products and the feed screw for granulated fertilizers. Furthermore, theoretical and experimental characteristic equations were established, defining curves for calibration and handling of the products plus the rotating speed range in which a better distributing behavior was achieved.
Resumo:
For an accurate use of pesticide leaching models it is necessary to assess the sensitivity of input parameters. The aim of this work was to carry out sensitivity analysis of the pesticide leaching model PEARL for contrasting soil types of Dourados river watershed in the state of Mato Grosso do Sul, Brazil. Sensitivity analysis was done by carrying out many simulations with different input parameters and calculating their influence on the output values. The approach used was called one-at-a-time sensitivity analysis, which consists in varying independently input parameters one at a time and keeping all others constant with the standard scenario. Sensitivity analysis was automated using SESAN tool that was linked to the PEARL model. Results have shown that only soil characteristics influenced the simulated water flux resulting in none variation of this variable for scenarios with different pesticides and same soil. All input parameters that showed the greatest sensitivity with regard to leached pesticide are related to soil and pesticide properties. Sensitivity of all input parameters was scenario dependent, confirming the need of using more than one standard scenario for sensitivity analysis of pesticide leaching models.