156 resultados para Optimum chemical balance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in land use and management can affect the dynamic equilibrium of soil systems and induce chemical and mineralogical alterations. This study was based on two long-term experiments (10 and 27 years) to evaluate soil used for no-tillage maize cultivation, with and without poultry litter application (NTPL and NTM), and with grazed native pasture fertilized with cattle droppings (GrP), on the chemical and mineralogical characteristics of a Rhodic Paleudult in Southern Brazil, in comparison with the same soil under native grassland (NGr). In the four treatments, soil was sampled from the 0.0-2.5 and 2.5-5.0 cm layers. In the air-dried fine soil (ADFS) fraction (∅ < 2 mm), chemical characteristics of solid and liquid phases and the specific surface area (SSA) were evaluated. The clay fraction (∅ < 0.002 mm) in the 0.0-2.5 cm layer was analyzed by X-ray diffraction (XRD) after treatments for identification and characterization of 2:1 clay minerals. Animal waste application increased the total organic C concentration (COT) and specific surface area (SSA) in the 0.0-2.5 cm layer. In comparison to NGr, poultry litter application (NTPL) increased the concentrations of Ca and CECpH7, while cattle droppings (GrP) increased the P and K concentrations. In the soil solution, the concentration of dissolved organic C was positively related with COT levels. With regard to NGr, the soil use with crops (NTM and NTPL) had practically no effect on the chemical elements in solution. On the other hand, the concentrations of most chemical elements in solution were higher in GrP, especially of Fe, Al and Si. The Fe and Al concentrations in the soil iron oxides were lower, indicating reductive/complexive dissolution of crystalline forms. The X-ray diffraction (XRD) patterns of clay in the GrP environment showed a decrease in intensity and reflection area of the 2:1 clay minerals. This fact, along with the intensified Al and Si activity in soil solution indicate dissolution of clay minerals in soil under cattle-grazed pasture fertilized with animal droppings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Brazilian East coast was intensely affected by deforestation, which drastically cut back the original biome. The possible impacts of this process on water resources are still unknown. The purpose of this study was an evaluation of the impacts of deforestation on the main water balance components of the Galo creek watershed, in the State of Espírito Santo, on the East coast of Brazil. Considering the real conditions of the watershed, the SWAT model was calibrated with data from 1997 to 2000 and validated for the period between 2001 and 2003. The calibration and validation processes were evaluated by the Nash-Sutcliffe efficiency coefficient and by the statistical parameters (determination coefficient, slope coefficient and F test) of the regression model adjusted for estimated and measured flow data. After calibration and validation of the model, new simulations were carried out for three different land use scenarios: a scenario in compliance with the law (C1), assuming the preservation of PPAs (permanent preservation areas); an optimistic scenario (C2), which considers the watershed to be almost entirely covered by native vegetation; and a pessimistic scenario (C3), in which the watershed would be almost entirely covered by pasture. The scenarios C1, C2 and C3 represent a soil cover of native forest of 76, 97 and 0 %, respectively. The results were compared with the simulation, considering the real scenario (C0) with 54 % forest cover. The Nash-Sutcliffe coefficients were 0.65 and 0.70 for calibration and validation, respectively, indicating satisfactory results in the flow simulation. A mean reduction of 10 % of the native forest cover would cause a mean annual increase of approximately 11.5 mm in total runoff at the watershed outlet. Reforestation would ensure minimum flows in the dry period and regulate the maximum flow of the main watercourse of the watershed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pig slurry applied to soil at different rates may affect soil properties and the mobility of chemical compounds within the soil. The purpose of this study was to evaluate the effects of rates of pig slurry application in agricultural areas on soil physical and chemical properties and on the mobility of glyphosate through the soil profile. The study was carried out in the 12th year of an experiment with pig slurry applied at rates of 0 (control), 50, 100 and 200 m³ ha-1 yr-1 on a Latossolo Vermelho distrófico (Hapludox) soil. In the control, the quantities of P and K removed by harvested grains were replaced in the next crop cycle. Soil physical properties (bulk density, porosity, texture, and saturated hydraulic conductivity) and chemical properties (organic matter, pH, extractable P, and exchangeable K) were measured. Soil solution samples were collected at depths of 20, 40 and 80 cm using suction lysimeters, and glyphosate concentrations were measured over a 60-day period after slurry application. Soil physical and chemical properties were little affected by the pig slurry applications, but soil pH was reduced and P levels increased in the surface layers. In turn, K levels were increased in sub-surface layers. Glyphosate concentrations tended to decrease over time but were not affected by pig slurry application. The concentrations of glyphosate found in different depths show that the pratice of this application in agricultural soils has the potential for contamination of groundwater, especially when the water table is the surface and heavy rains occur immediately after application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphate release kinetics from manures are of global interest because sustainable plant nutrition with phosphate will be a major concern in the future. Although information on the bioavailability and chemical composition of P present in manure used as fertilizer are important to understand its dynamics in the soil, such studies are still scarce. Therefore, P extraction was evaluated in this study by sequential chemical fractionation, desorption with anion-cation exchange resin and 31P nuclear magnetic resonance (31P-NMR) spectroscopy to assess the P forms in three different dry manure types (i.e. poultry, cattle and swine manure). All three methods showed that the P forms in poultry, cattle and swine dry manures are mostly inorganic and highly bioavailable. The estimated P pools showed that organic and recalcitrant P forms were negligible and highly dependent on the Ca:P ratio in manures. The results obtained here showed that the extraction of P with these three different methods allows a better understanding and complete characterization of the P pools present in the manures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agricultural production systems that include the production of mulch for no-tillage farming and structural improvement of the soil can be considered key measures for agricultural activity in the Cerrado region without causing environmental degradation. In this respect, our work aimed to evaluate the chemical and physical-hydric properties of a dystrophic Red Latosol (Oxisol) in the municipality of Rio Verde, Goias, Brazil, under different soil management systems in the between-crop season of soybean cultivation five years after first planting. The following conditions were evaluated: Brachiaria brizantha cv. Marandu as a cover crop during the between-crop season; Second crop of maize intercropped with Brachiaria ruziziensis; Second crop of grain alone in a no-tillage system; Fallow soil after the soybean harvest; and Forest (natural vegetation) located in an adjacent area. Soil samples up to a depth of 40 cm were taken and used in the assessment of chemical properties and soil structure diagnostics. The results demonstrated that the conversion of native vegetation areas into agricultural fields altered the chemical and physical-hydric properties of the soil at all the depths evaluated, especially up to 10 cm, due to the activity of root systems in the soil structure. Cultivation of B. brizantha as a cover crop during the summer between-crop season increased soil water availability, which is important for agricultural activities in the region under study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lack of information concerning the variability of soil properties has been a major concern of researchers in the Amazon region. Thus, the aim of this study was to evaluate the spatial variability of soil chemical properties and determine minimal sampling density to characterize the variability of these properties in five environments located in the south of the State of Amazonas, Brazil. The five environments were archaeological dark earth (ADE), forest, pasture land, agroforestry operation, and sugarcane crop. Regular 70 × 70 m mesh grids were set up in these areas, with 64 sample points spaced at 10 m distance. Soil samples were collected at the 0.0-0.1 m depth. The chemical properties of pH in water, OM, P, K, Ca, Mg, H+Al, SB, CEC, and V were determined at these points. Data were analyzed by descriptive and geostatistical analyses. A large part of the data analyzed showed spatial dependence. Chemical properties were best fitted to the spherical model in almost all the environments evaluated, except for the sugarcane field with a better fit to the exponential model. ADE and sugarcane areas had greater heterogeneity of soil chemical properties, showing a greater range and higher sampling density; however, forest and agroforestry areas had less variability of chemical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of organic fertilizers and the inoculation of mycorrhizal fungi in the cultivation of oil crops is essential to reduce production costs and minimize negative impacts on natural resources. A field experiment was conducted in an Argissolo Amarelo (Ultisol) with the aim of evaluating the effects of fertilizer application and inoculation of arbuscular mycorrhizal fungi on the growth attributes of sunflower (Helianthus annuus L.) and on soil chemical properties. The experiment was conducted at the Federal University of Rio Grande do Norte, Brazil, using a randomized block design with three replicates in a 4 × 2 factorial arrangement consisting of four treatments in regard to application of organic fertilizer (liquid biofertilizer, cow urine, mineral fertilizer, and unfertilized control) and two treatments in regard to arbuscular mycorrhizal fungi (with and without mycorrhizal fungi). The results showed that the physiological attributes of relative growth rate and leaf weight ratio were positively influenced by fertilization, compared to the control treatment, likely brought about by the supply of nutrients from the fertilizers applied. The growth and productivity attributes were positively affected by mycorrhization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current high price of potassium chloride and the dependence of Brazil on imported materials to supply the domestic demand call for studies evaluating the efficiency of alternative sources of nutrients. The aim of this work was to evaluate the effect of silicate rock powder and a manganese mining by-product, and secondary materials originated from these two materials, on soil chemical properties and on brachiaria production. This greenhouse experiment was conducted in pots with 5 kg of soil (Latossolo Vermelho-Amarelo distrófico - Oxisol). The alternative nutrient sources were: verdete, verdete treated with NH4OH, phonolite, ultramafic rock, mining waste and the proportion of 75 % of these K fertilizers and 25 % lime. Mixtures containing 25 % of lime were heated at 800 ºC for 1 h. These sources were applied at rates of 0, 150, 300, 450 and 600 kg ha-1 K2O, and incubated for 45 days. The mixtures of heated silicate rocks with lime promoted higher increases in soil pH in decreasing order: ultramafic rock>verdete>phonolite>mining waste. Applying the mining waste-lime mixture increased soil exchangeable K, and available P when ultramafic rock was incorporated. When ultramafic rock was applied, the release of Ca2+ increased significantly. Mining subproduct released the highest amount of Zn2+ and Mn2+ to the soil. The application of alternative sources of K, with variable chemical composition, altered the nutrient availability and soil chemical properties, improving mainly plant development and K plant uptake, and are important nutrient sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melon is one of the most demanding cucurbits regarding fertilization, requiring knowledge of soils, crop nutritional requirements, time of application, and nutrient use efficiency for proper fertilization. Developing support systems for decision-making for fertilization that considers these variables in nutrient requirement and supply is necessary. The objective of this study was parameterization of a fertilizer recommendation system for melon (Ferticalc-melon) based on nutritional balance. To estimate fertilizer recommendation, the system considers the requirement subsystem (REQ), which includes the demand for nutrients by the plant, and the supply subsystem (SUP), which corresponds to the supply of nutrients through the soil and irrigation water. After determining the REQtotal and SUPtotal, the system calculates the nutrient balances for N, P, K, Ca, Mg, and S, recommending fertilizer application if the balance is negative (SUP < REQ), but not if the balance is positive or zero (SUP ≥ REQ). Simulations were made for different melon types (Yellow, Cantaloupe, Galia and Piel-de-sapo), with expected yield of 45 t ha-1. The system estimated that Galia type was the least demanding in P, while Piel-de-sapo was the most demanding. Cantaloupe was the least demanding for N and Ca, while the Yellow type required less K, Mg, and S. As compared to other fertilizer recommendation methods adopted in Brazil, the Ferticalc system was more dynamic and flexible. Although the system has shown satisfactory results, it needs to be evaluated under field conditions to improve its recommendations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After open coal mining, soils are “constructed”, which usually contain low levels and quality of organic matter (OM). Therefore, the use of plant species for revegetation and reclamation of degraded areas is essential. This study evaluated the distribution of carbon (C) in the chemical fractions as well as the chemical characteristics and humification degree of OM in a soil constructed after coal mining under cultivation of perennial grasses. The experiment was established in 2003 with the following treatments: Hemarthria altissima (T1), Paspalum notatum (T2), Cynodon dactilon (T3), Urochloa brizantha (T4), bare constructed soil (T5), and natural soil (T6). In 2009, soil samples were collected from the 0.00-0.03 m layer and the total organic carbon stock (TOC) and C stock in the chemical fractions: acid extract (CHCl), fulvic acid (CFA), humic acid (CHA), and humin (CHU) were determined. The humic acid (HA) fraction was characterized by infrared spectroscopy and the laser-induced fluorescence index (ILIF) of OM was also calculated. After six years, differences were only observed in the CHA stocks, which were highest in T1 (0.89 Mg ha-1) and T4 (1.06 Mg ha-1). The infrared spectra of HA in T1, T2 and T4 were similar to T6, with greater contribution of aliphatic organic compounds than in the other treatments. In this way, ILIF decreased in the sequence T5>T3>T4>T1>T2>T6, indicating higher OM humification in T3 and T5 and more labile OM in the other treatments. Consequently, the potential of OM quality recovery in the constructed soil was greatest in treatments T1 and T4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brazilian soils have natural high chemical variability; thus, apparent electrical conductivity (ECa) can assist interpretation of crop yield variations. We aimed to select soil chemical properties with the best linear and spatial correlations to explain ECa variation in the soil using a Profiler sensor (EMP-400). The study was carried out in Sidrolândia, MS, Brazil. We analyzed the following variables: electrical conductivity - EC (2, 7, and 15 kHz), organic matter, available K, base saturation, and cation exchange capacity (CEC). Soil ECa was measured with the aid of an all-terrain vehicle, which crossed the entire area in strips spaced at 0.45 m. Soil samples were collected at the 0-20 cm depth with a total of 36 samples within about 70 ha. Classical descriptive analysis was applied to each property via SAS software, and GS+ for spatial dependence analysis. The equipment was able to simultaneously detect ECa at the different frequencies. It was also possible to establish site-specific management zones through analysis of correlation with chemical properties. We observed that CEC was the property that had the best correlation with ECa at 15 kHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT The large production of sewage sludge (SS), especially in large urban centers, has led to the suggestion of using this waste as fertilizer in agriculture. The economic viability of this action is great and contributes to improve the environment by cycling the nutrients present in this waste, including high contents of organic matter and plant nutrients. This study evaluated the chemical and biochemical properties of Dystrophic and EutroferricLatossolos Vermelhos (Oxisols) under corn and after SS application at different rates for 16 years. The field experiment was carried out in Jaboticabal, São Paulo State, Brazil, using a randomized block design with four treatments and five replications. Treatments consisted of control - T1 (mineral fertilization, without SS application), 5 Mg ha-1 SS - T2, 10 Mg ha-1 SS - T3, and 20 Mg ha-1 SS - T4 (dry weight base). The data were submitted to variance analysis and means were compared by the Duncan test at 5 %. Sewage sludge increased P extracted by resin in both theLatossolos Vermelhos, Dystrophic and Eutroferric, and the organic matter content in the Dystrophic Latossolo Vermelho. The waste at the rate 20 Mg ha-1 on a dry weight basis promoted increases in acid phosphatase activity in Eutroferric Latossolo Vermelho, basal respiration and metabolic quotient in DystrophicLatossolo Vermelho. The rate 20 Mg ha-1 sewage sludge on a dry weight basis did not alter the soil microbial biomass in both the Latossolos Vermelhos; in addition, it improved corn yields without inducing any symptoms of phytotoxicity or nutrient deficiency in the plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Knowledge of the terms (or processes) of the soil water balance equation or simply the components of the soil water balance over the cycle of an agricultural crop is essential for soil and water management. Thus, the aim of this study was to analyze these components in a Cambissolo Háplico (Haplocambids) growing muskmelon (Cucumis melo L.) under drip irrigation, with covered and uncovered soil, in the municipality of Baraúna, State of Rio Grande do Norte, Brazil (05º 04’ 48” S, 37º 37’ 00” W). Muskmelon, variety AF-646, was cultivated in a flat experimental area (20 × 50 m). The crop was spaced at 2.00 m between rows and 0.35 m between plants, in a total of ten 50-m-long plant rows. At points corresponding to ⅓ and ⅔ of each plant row, four tensiometers (at a distance of 0.1 m from each other) were set up at the depths of 0.1, 0.2, 0.3, and 0.4 m, adjacent to the irrigation line (0.1 m from the plant row), between two selected plants. Five random plant rows were mulched using dry leaves of banana (Musa sp.) along the drip line, forming a 0.5-m-wide strip, which covered an area of 25 m2 per of plant row with covered soil. In the other five rows, there was no covering. Thus, the experiment consisted of two treatments, with 10 replicates, in four phenological stages: initial (7-22 DAS - days after sowing), growing (22-40 DAS), fruiting (40-58 DAS) and maturation (58-70 DAS). Rainfall was measured with a rain gauge and water storage was estimated by the trapezoidal method, based on tensiometer readings and soil water retention curves. For soil water flux densities at 0.3 m, the tensiometers at the depths of 0.2, 0.3, and 0.4 m were considered; the tensiometer at 0.3 m was used to estimate soil water content from the soil water retention curve at this depth, and the other two to calculate the total potential gradient. Flux densities were calculated through use of the Darcy-Buckingham equation, with hydraulic conductivity determined by the instantaneous profile method. Crop actual evapotranspiration was calculated as the unknown of the soil water balance equation. The soil water balance method is effective in estimating the actual evapotranspiration of irrigated muskmelon; there was no significant effect of soil coverage on capillary rise, internal drainage, crop actual evapotranspiration, and muskmelon yield compared with the uncovered soil; the transport of water caused by evaporation in the uncovered soil was controlled by the break in capillarity at the soil-atmosphere interface, which caused similar water dynamics for both management practices applied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Groundwater management depends on the knowledge on recharge rates and water fluxes within aquifers. The recharge is one of the water cycle components most difficult to estimate. As a result, despite the chosen method, the estimates are subject to uncertainties that can be identified by means of comparison with other approaches. In this study, groundwater recharge estimates based on the water balance in the unsaturated zone is assessed. Firstly, the approach is evaluated by comparing the results with those of another method. Then, the estimates are used as inputs in a transient groundwater flow model in order to assess how the water table would respond to the obtained recharges rates compared to measured levels. The results suggest a good performance of the adopted approach and, despite some inherent limitations, it has advantages over other methods since the data required are easier to obtain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT The literature on fertilization for carrot growing usually recommends nutrient application rates for yield expectations lower than the yields currently obtained. Moreover, the recommendation only considers the results of soil chemical analysis and does not include effects such as crop residues or variations in yield levels. The aim of this study was to propose a fertilizer recommendation system for carrot cultivation (FERTICALC Carrot) which includes consideration of the nutrient supply by crop residues, variation in intended yield, soil chemical properties, and the growing season (winter or summer). To obtain the data necessary for modeling nutritional requirements, 210 carrot production stands were sampled in the region of Alto Paranaíba, State of Minas Gerais, Brazil. The dry matter content of the roots, the coefficient of biological utilization of nutrients in the roots, and the nutrient harvest index for summer and winter crops were determined for these samples. To model the nutrient supply by the soil, the literature was surveyed in regard to this theme. A modeling system was developed for recommendation of macronutrients and B. For cationic micronutrients, the system only reports crop nutrient export and extraction. The FERTICALC which was developed proved to be efficient for fertilizer recommendation for carrot cultivation. Advantages in relation to official fertilizer recommendation tables are continuous variation of nutrient application rates in accordance with soil properties and in accordance with data regarding the extraction efficiency of modern, higher yielding cultivars.