183 resultados para Nitrate recirculation
Resumo:
The objective of this work was to evaluate the agroindustrial production of sugarcane (millable stalks and sucrose yield) after successive nitrogen fertilizations of plant cane and ratoons in a reduced tillage system. The experiment was carried out at Jaboticabal, SP, Brazil, on a Rhodic Eutrustox soil, during four consecutive crop cycles (March 2005 to July 2009). Plant cane treatments consisted of N-urea levels (control, 40, 80, and 120 kg ha-1 N + 120 kg ha-1 P2O5 and K2O in furrow application). In the first and second ratoons, the plant cane plots were subdivided in N-ammonium nitrate treatments (control, 50, 100, and 150 kg ha-1 N + 150 kg ha-1 K2O as top dressing over rows). In the third ratoon, N fertilization was leveled to 100 kg ha-1 in all plots, including controls, to detect residual effects of previous fertilizations on the last crop's cycle. Sugarcane ratoon was mechanically harvested. A weighing truck was used to evaluate stalk yield (TCH), and samples were collected in the field for analysis of sugar content (TSH). Increasing N doses and meteorological conditions promote significant responses in TCH and TSH in cane plant and ratoons, in the average and accumulated yield of the consecutive crop cycles.
Resumo:
The objective of this work was to measure the fluxes of N2O‑N and NH3‑N throughout the growing season of irrigated common‑bean (Phaseolus vulgaris), as affected by mulching and mineral fertilization. Fluxes of N2O‑N and NH3‑N were evaluated in areas with or without Congo signal grass mulching (Urochloa ruziziensis) or mineral fertilization. Fluxes of N were also measured in a native Cerrado area, which served as reference. Total N2O‑N and NH3‑N emissions were positively related to the increasing concentrations of moisture, ammonium, and nitrate in the crop system, within 0.5 m soil depth. Carbon content in the substrate and microbial biomass within 0.1 m soil depth were favoured by Congo signal grass and related to higher emissions of N2O‑N, regardless of N fertilization. Emission factors (N losses from the applied mineral nitrogen) for N2O‑N (0.01-0.02%) and NH3‑N (0.3-0.6%) were lower than the default value recognized by the Intergovernmental Panel on Climate Change. Mulch of Congo signal grass benefits N2O‑N emission regardless of N fertilization.
Resumo:
The catalytic dehydrogenation of ethylbenzene in presence of steam is the main commercial route to produce styrene. The industrial catalysts are potassium- and chromia-doped hematite which show low surface areas leading to bad performance and short life. In order to develop catalysts with high areas, the effect of beryllium on the textural properties and on the catalytic performance of this iron oxide was studied. The influence of the amount of the dopant, the starting material and the calcination temperature were also studied. In sample preparations, iron and beryllium salts (nitrate or sulfate) were hydrolyzed with ammonia and then calcinated. The experiments followed a factorial design with two variables in two levels (Fe/Be= 3 and 7; calcination temperature= 500 and 700ºC). Solids without any dopant were also prepared. Samples were characterized by elemental analysis, infrared spectroscopy, surface area and porosity measurements, X-ray diffraction, DSC and TG. The catalysts were tested in a microreactor at 524ºC and 1 atm, by using a mole ratio of steam/ ethylbenzene=10. The selectivity was measured by monitoring styrene, benzene and toluene formation. It was found that the effect of beryllium on the characteristics of hematite and on its catalytic performance depends on the starting material and on the amount of dopant. Surface areas increased due to the dopant as well as the nature of the precursor; samples produced by beryllium sulfate showed higher areas. Beryllium-doped solids showed a higher catalytic activity when compared to pure hematite, but no significant influence of the anion of starting material was noted. It can be concluded that beryllium acts as both textural and structural promoter. Samples with Fe/Be= 3, heated at 500ºC, lead to the highest conversion and were the most selective. However, catalysts prepared from beryllium sulfate are the most promising to ethylbenzene dehydrogenation due to their high surface area which could lead to a longer life.
Resumo:
The physical and chemical characterization of vermicompost from bovine manure has been studied. It was examined the pH and cation exchangeable capacity (CEC), organic matter content, electric conductivity and elementary and XRD analyses, among other characteristics. The vermicompost was then applied to the retention and competition of metal micronutrients and pollutants (Cu and Zn) from metal nitrate solutions. The retention was affected by both the pH and adsorption time, while the competitive character of these metals for the substrate was relevant to each pH examined.
Resumo:
Oxyradicals play a tole in several diseases. While for several decades the hydroxyl radical - produced via the Fenton reaction - has been considered the species that initiates oxyradical damage, new findings suggest that much of this damage can be ascribed to peroxynitrite, O=NOO-, formed from the reaction of the superoxide anion with nitrogen monoxide near activated macrophages. The rate constant for the reaction of this reaction has been investigated by flash photolysis and was found to be significantly higher than previously described in the literature, 1.9 x 10(10) M-1s-1. Studies of the isomerization to nitrate resulted in the discovery of a complex between peroxynitrite and its protonated form with a stability constant of 1 x 10(4) M-1. Some of the harmful reaction of peroxynitrous acid have been ascribed to the hydroxyl radical as a product of homolysis of the O-O bond during the conversion to nitrate. Kinetics of the isomerization reaction as a function of pressure show that the activation volume is only +1.5+1.0 ml mol-1, which is inconsistent with homolysis. Instead, an intermediate, possibly a distorted trans-isomer of O=NOOH could be responsible for the harmful reactions of peroxynitrite.
Resumo:
In a tropical coastal area. During 6 months the composition of rain samples collected simultaneously over 24h with an open collector and with an automatic opened collector (KFA - J¸lich Type) at 500m of the Atlantic coastline of Salvador were compared. All average concentrations were higher for the "total" samples than for the "wet only" samples, except for hydrogen ions, nitrate and ammonium.
Resumo:
This paper proposes an experiment to be performed in both instrumental analysis and experimental physical-chemistry curricular disciplines in order to open options to develop challenging basic research activities. Thus the experimental procedures and the results obtained in the preparation of electrodeposited lead dioxide onto graphite and its evaluation as potentiometric sensor for H3O+ and Pb2+ ions, are presented. The data obtained in acid-base titrations were compared with those of the traditional combination glass electrode at the same conditions. Although a linear sub-Nernstian response to free hydrogen ions was observed for the electrodeposited PbO2 electrode, a good agreement was obtained between them. Working as lead(II) sensing electrode, the PbO2 showed a linear sub-Nernstian behavior at total Pb2+ concentrations ranging from 3,5 x 10-4 to 3,0 x 10-2 mol/L in nitrate media. For the redox couple PbO2/Pb(II) the operational slope converges to the theoretical one, as the acidity of the working solution increases.
Resumo:
The classical volumetric titration of Fe2+ with MnO4-, used in some routine analysis as well as in undergraduate courses was improved. SnCl2 (to reduce Fe3+ to Fe2+) and HgCl2 (to oxidize excess SnCl2) were substituted by metallic zinc in boiling solutions, thus avoiding the toxic HgCl2 and Hg2Cl2; nitrate ions do not interfere in the improved methodology (it is an interference in the classical one) and the reproducibility of the determinations is increased by using metallic zinc. Determinations by students of undergraduate courses are discussed.
Resumo:
Potentiometric amalgam electrodes of lead, cadmium, and zinc are proposed to study the complexation properties of commercial and river sediment humic acids. The copper complexation properties of both humic acids were studied in parallel using the solid membrane copper ion-selective electrode (Cu-ISE). The complexing capacity and the averaged conditional stability constants were determined at pH 6.00 ± 0.05 in medium of 2x10-2 mol L-1 sodium nitrate, using the Scatchard method. The lead and cadmium amalgam electrodes presented a Nernstian behavior from 1x10-5 to 1x10-3 moles L-1 of total metal concentration, permitting to perform the complexation studies using humic acid concentrations around of 20 to 30 mg L-1, that avoids colloidal aggregation. The zinc amalgam electrode showed a subnernstian linear response in the same range of metal concentrations. The Scatchard graphs for both humic acids suggested two classes of binding sites for lead and copper and one class of binding site for zinc and cadmium.
Resumo:
In environmental studies it is necessary to know the adsorption behavior of metals by soils, since the unfavorable effects of heavy metals and even the micronutrients at high concentrations in the environment are related to these adsorbents' ability to immobilize them. A sample of a humic yellow red oxisol from Araponga region in the State of Minas Gerais, Brazil, was used to verify the adsorption behavior of Cu2+ ions in this substrate. The mathematical model described by Langmuir's adsorption equation in its linearized form was applied and the values of the maximum capacity b and those of the constant related to the bonding energy a were obtained. Aliquots of copper nitrate solutions containing several concentrations of this metal were added to soil samples, the pH being predetermined for developing the adsorption experiments. The chemical and physical characterization of soil sample were performed by determining the organic carbon, nitrogen and phosphorus concentrations, cation exchange capacity (CEC), pH, concentration of metals (Al, Fe, K, Mg, Ca, Zn, Cu, Ni, Cr, Co, Pb, and Cd), granulometric analysis and X-ray diffraction. Langmuir isotherms presented two distinct adsorption regions at both pH 4 and pH 5, showing that the adsorptive phenomenon occurs in two distinct stages. The adsorption sites for the lower part presented greater bonding energy and low adsorption capacity compared with the adsorption sites of the part of the curve corresponding to higher Cu concentrations in the equilibrating solution.
Resumo:
The effects of chloride and nitrate anions and their respective concentrations, as well as urea presence, on solid phase morphologies were investigated. Zinc hydroxide carbonate was prepared by aging diluted zinc salt solution in presence of urea at 90ºC. Samples were identified by X-ray powder diffractograms showing the characteristic patterns of hydrozincite. The crystallinity was correlated with the concentrations of reagents. Spherulitic-type aggregates and single acicular particles were obtained from diluted chloride and nitrate solutions while porous aggregates of uniform size were formed from solutions with high chloride and urea concentrations.
Resumo:
The chemical and physical characterization of coastal peat has been studied. It was examined the pH, organic matter content and elementary and XRD analyses, among other characteristics. The peat was then applied to the retention and competition of metal micronutrients (Cu and Zn) from metal nitrate solutions. The retention was affected by both the pH and time of adsorption, while the competitive character of these metals for the substrate was relevant to each pH examined.
Resumo:
UNS S31254 SS electrodes have been built to substitute platinum in conductimetric titrations. The electrodes were tested in both acid-basic titration (chloridric acid and sodium hydroxide) and precipitation titration (sodium chloride and argentum nitrate as titrant). The practical application was exemplified from conductimetric tritations of HF ¾ HNO3 mixtures used in metalurgical industry to passivate stainless steels. The results were compared with those obtained using commercial platinum electrodes. The equivalent volumes obtained were comparable within 3% experimental error. Its application depends on the nature of electrolyte. These results have shown that stainless steel, less expensive than platinum (about three order of magnitude), can substitute platinum electrodes in routine analyses and didactic laboratories.
Resumo:
In this study, a comparison of two methods, the Selective UV Spectrophotometrical Method and Reduction with Hidrazine Method, for the determination of Nitrate ion in groundwater, was carried out. For this purpose, the results from all the drinking water collectings of the city of Olavarría, Argentina, were employed. Both methods present significant different means, but they don´t present significant differences in their variances.
Resumo:
Simultaneous oxidation/co-precipitation of an equimolar mixture of La(III) and Co(II) nitrates and La(III) nitrate and Mn(II) chloride afforded a hydroxide gel, which was converted to LaCoO3 and LaMnO3 on calcination at 600 °C. After calcination, the obtained perovskites have been characterised by X-ray diffraction (XRD), X- ray photoelectron spectroscopy (XPS), thermogravimetric analysis (DTA - TGA) and BET specific surface determination. Specific surface areas of perovskites were 12 - 60 m²/g. XRD analysis showed that LaCoO3 and LaMnO3 are simple phase perovskite - type oxides. Traces of LaOCl, in addition to the perovskite were detected in the LaMnO3. The catalytic behavior was examined in the propane and CO oxidation. The LaCoO3 catalyst was more active to CO2 than the LaMnO3 catalyst.