159 resultados para Multivariate regression
Resumo:
Visceral leishmaniasis, or kala-azar, is recognised as a serious emerging public health problem in India. In this study, environmental parameters, such as land surface temperature (LST) and renormalised difference vegetation indices (RDVI), were used to delineate the association between environmental variables and Phlebotomus argentipes abundance in a representative endemic region of Bihar, India. The adult P. argentipes were collected between September 2009-February 2010 using the hand-held aspirator technique. The distribution of P. argentipes was analysed with the LST and RDVI of the peak and lean seasons. The association between environmental covariates and P. argentipes density was analysed a multivariate linear regression model. The sandfly density at its maximum in September, whereas the minimum density was recorded in January. The regression model indicated that the season, minimum LST, mean LST and mean RDVI were the best environmental covariates for the P. argentipes distribution. The final model indicated that nearly 74% of the variance of sandfly density could be explained by these environmental covariates. This approach might be useful for mapping and predicting the distribution of P. argentipes, which may help the health agencies that are involved in the kala-azar control programme focus on high-risk areas.
Resumo:
Based on data available in the Information System for Notifiable Diseases, predictive factors of favorable results were identified in the treatment of pulmonary tuberculosis, diagnosed between 2001 and 2004 and living in Recife-PE, Brazil. Uni- and multivariate logistic regression methods were used. In multivariate analysis, the following factors remained: Age (years), 0 to 9 (OR=4.27; p=0.001) and 10 to 19 (OR=1.78; p=0.011), greater chance of cure than over 60; Education (years), 8 to 11 (OR=1.52; p=0.049), greater chance of cure than no education; Type of entry, new cases (OR=3.31; p<0.001) and relapse (OR=3.32; p<0.001), greater chances of cure than restart after abandonment; Time (months) 2, 5-|6 (OR=9.15; p<0.001); 6-|9 (OR=27.28; p<0.001) and More than 9 (OR=24.78; p<0.001), greater chances of cure than less than 5; Health Unit District, DS I (OR=1.60; p=0.018) and DS IV (OR=2.87; p<0.001), greater chances of cure than DS VI.
Resumo:
The aim of this study was to estimate the prevalence and factors associated with the occurrence of incidents related to medication, registered in the medical records of patients admitted to a Surgical Clinic, in 2010. This is a cross-sectional study, conducted at a university hospital, with a sample of 735 hospitalizations. Was performed the categorization of types of incidents, multivariate analysis of regression logistic and calculated the prevalence. The prevalence of drug-related incidents was estimated at 48.0% and were identified, as factors related to the occurrence of these incidents: length of hospitalization more than four days, prescribed three or more medications per day and realization of surgery intervention. It is expected to have contributed for the professionals and area managers can identify risky situations and rethink their actions.
Resumo:
The aim of this study was to estimate the prevalence and factors associated with the occurrence of incidents related to medication, registered in the medical records of patients admitted to a Surgical Clinic, in 2010. This is a cross-sectional study, conducted at a university hospital, with a sample of 735 hospitalizations. Was performed the categorization of types of incidents, multivariate analysis of regression logistic and calculated the prevalence. The prevalence of drug-related incidents was estimated at 48.0% and were identified, as factors related to the occurrence of these incidents: length of hospitalization more than four days, prescribed three or more medications per day and realization of surgery intervention. It is expected to have contributed for the professionals and area managers can identify risky situations and rethink their actions.
Resumo:
OBJECTIVE To assess the association of sociodemographic and self-rated health in the presence of cardiovascular diseases and the association of this perception with the type of disease. METHODS A cross-sectional population survey study carried out with 1,232 individuals aged between 20 and 59 years of both genders living in the metropolitan region of Maringá-PR. Data were analyzed using multiple and simple logistic regression. RESULTS In multivariate analysis, the age range and self-rated health were associated with cardiovascular disease, and in the univariate analysis self-rated regular health was associated with arterial hypertension, while self-rated poor health was associated to heart failure, stroke, and to acute myocardial infarction (heart attack). CONCLUSION The differences in association of self-rated health with these diseases can indicate how individuals with certain characteristics cope with the disease, allowing for more individualized and specific health care.
Resumo:
Abstract OBJECTIVE To investigate the association between handgrip strength (HS) and physical activity in physical frailty elderly. METHOD Cross-sectional quantitative study with a sample of 203 elderly calculated based on the population estimated proportion. Tests were applied to detect cognitive impairment and assessment of physical frailty. Descriptive statistics and multivariate analysis by binary logistic regression were used, and also Student's t-test and Fisher's exact test. RESULTS A total of 99 (64.3%) elderly showed decreased handgrip strength and 90 (58.4%) elderly presented decrease in physical activity levels. There was a statistically significant difference between these two components (p=0.019), in which elderly who have decreased HS have lower levels of physical activity. For low levels of physical activity and decreased HS, there was no evidence of significant difference in the probability of the classification as frail elderly (p<0.001). CONCLUSION The components handgrip strength and physical activity are associated with the frail elderly. The joint presence of low levels of physical activity and decreased handgrip strength leads to a significantly higher probability of the elderly to be categorized as frailty.
Resumo:
Irrigation with treated domestic sewage wastewater (TSE) is an agricultural practice to reduce water requirements of agroecossystems and the nutrient load impact on freshwaters, but adverse effects on soil chemical (salinization, sodification, etc.) and soil physical properties (alteration in soil porosity and hydraulic conductivity, etc.) have been reported. This study aimed to define some relationships among these changes in an Oxisol using multivariate analysis. Corn (Zea mays L.) and sunflower (Helianthus annuus L.) were grown for two years, irrigated with TSE. The following soil properties were determined: Ca2+; Mg2+; Na+; K+ and H + Al contents, cationic exchangeable capacity (CEC), sum of bases (SB), base saturation (V), texture (sand, silt and clay), macro-, micro-, and cryptoporosity (V MA, V MI and V CRI), water content at soil saturation (θS) and at field capacity (θFC), residual water content (θR), soil bulk density (d s), water dispersed clay (WDC) and saturated hydraulic conductivity (K SAT). Factor analysis revealed the following six principal factors: Fine Porosity (composed of Na+; K+; WDC, θR, θRFC, and V CRI); Large Porosity (θS, d s, V MA, Vs); Soil CEC (Ca2+; Mg2+; CEC, SB, V); Soil Acidity (H + Al); and Soil Texture (factors 5 and 6). A dual pore structure appears clearly to the factors 1 and 2, with an apparent relationship between fine porosity and the monovalent cations Na+ and K+. The irrigation (with potable sodic tap water or sewage wastewater) only had a significant effect on Fine Porosity and Large Porosity factors, while factors 3 and 4 (Soil CEC and Soil Acidity) were correlated with soil depth. The main conclusion was a shift in pore distribution (large to fine pores) during irrigation with TSE, which induces an increase of water storage and reduces the capacity of drainage of salts.
Resumo:
The spatial variability of soil and plant properties exerts great influence on the yeld of agricultural crops. This study analyzed the spatial variability of the fertility of a Humic Rhodic Hapludox with Arabic coffee, using principal component analysis, cluster analysis and geostatistics in combination. The experiment was carried out in an area under Coffea arabica L., variety Catucai 20/15 - 479. The soil was sampled at a depth 0.20 m, at 50 points of a sampling grid. The following chemical properties were determined: P, K+, Ca2+, Mg2+, Na+, S, Al3+, pH, H + Al, SB, t, T, V, m, OM, Na saturation index (SSI), remaining phosphorus (P-rem), and micronutrients (Zn, Fe, Mn, Cu and B). The data were analyzed with descriptive statistics, followed by principal component and cluster analyses. Geostatistics were used to check and quantify the degree of spatial dependence of properties, represented by principal components. The principal component analysis allowed a dimensional reduction of the problem, providing interpretable components, with little information loss. Despite the characteristic information loss of principal component analysis, the combination of this technique with geostatistical analysis was efficient for the quantification and determination of the structure of spatial dependence of soil fertility. In general, the availability of soil mineral nutrients was low and the levels of acidity and exchangeable Al were high.
Resumo:
In the State of Rio Grande do Sul, the municipality of Pelotas is responsible for 90 % of peach production due to its suitable climate and soil conditions. However, there is the need for new studies that aim at improved fruit quality and increased yield. The aim of this study was to evaluate the relationship that exists between soil physical properties and properties in the peach plant in the years 2010 and 2011 by the technique of multivariate canonical correlation. The experiment was conducted in a peach orchard located in the municipality of Morro Redondo, RS, Brazil, where an experimental grid of 101 plants was established. In a trench dug beside each one of the 101 plants, soil samples were collected to determine silt, clay, and sand contents, soil density, total porosity, macroporosity, microporosity, and volumetric water content in the 0.00-0.10 and 0.10-0.20 m layers, as well as the depth of the A horizon. In each plant and in each year, the following properties were assessed: trunk diameter, fruit size and number of fruits per plant, average weight of the fruit per plant, fruit pulp firmness, Brix content, and yield from the orchard. Exploratory analysis of the data was undertaken by descriptive statistics, and the relationships between the physical properties of the soil and of the plant were assessed by canonical correlation analysis. The results showed that the clay and microporosity variables were those that exhibited the highest coefficients of canonical cross-loading with the plant properties in the soil layers assessed, and that the variable of mean weight of the fruit per plant was that which had the highest coefficients of canonical loading within the plant group for the two years assessed.
Resumo:
The objectives of this work were to evaluate the genotype x environment (GxE) interaction for popcorn and to compare two multivariate analyses methods. Nine popcorn cultivars were sown on four dates one month apart during each of the agricultural years 1998/1999 and 1999/2000. The experiments were carried out using randomized block designs, with four replicates. The cv. Zélia contributed the least to the GxE interaction. The cv. Viçosa performed similarly to cv. Rosa-claro. Optimization of GxE was obtained for cv. CMS 42 for a favorable mega-environment, and for cv. CMS 43 for an unfavorable environment. Multivariate analysis supported the results from the method of Eberhart & Russell. The graphic analysis of the Additive Main effects and Multiplicative Interaction (AMMI) model was simple, allowing conclusions to be made about stability, genotypic performance, genetic divergence between cultivars, and the environments that optimize cultivar performance. The graphic analysis of the Genotype main effects and Genotype x Environment interaction (GGE) method added to AMMI information on environmental stratification, defining mega-environments and the cultivars that optimized performance in those mega-environments. Both methods are adequate to explain the genotype x environment interactions.
Resumo:
The objective of this work was to assess and characterize two clones, 169 and 685, of Cabernet Sauvignon grapes and to evaluate the wine produced from these grapes. The experiment was carried out in São Joaquim, SC, Brazil, during the 2009 harvest season. During grape ripening, the evolution of physical-chemical properties, phenolic compounds, organic acids, and anthocyanins was evaluated. During grape harvest, yield components were determined for each clone. Individual and total phenolics, individual and total anthocyanins, and antioxidant activity were evaluated for wine. The clones were also assessed regarding the duration of their phenological cycle. During ripening, the evolution of phenolic compounds and of physical-chemical parameters was similar for both clones; however, during harvest, significant differences were observed regarding yield, number of bunches per plant and berries per bunch, leaf area, and organic acid, polyphenol, and anthocyanin content. The wines produced from these clones showed significant differences regarding chemical composition. The clones showed similar phenological cycle and responses to bioclimatic parameters. Principal component analysis shows that clone 685 is strongly correlated with color characteristics, mainly monomeric anthocyanins, while clone 169 is correlated with individual phenolic compounds.
Resumo:
The objective of this work was to estimate the stability and adaptability of pod and seed yield in runner peanut genotypes based on the nonlinear regression and AMMI analysis. Yield data from 11 trials, distributed in six environments and three harvests, carried out in the Northeast region of Brazil during the rainy season were used. Significant effects of genotypes (G), environments (E), and GE interactions were detected in the analysis, indicating different behaviors among genotypes in favorable and unfavorable environmental conditions. The genotypes BRS Pérola Branca and LViPE‑06 are more stable and adapted to the semiarid environment, whereas LGoPE‑06 is a promising material for pod production, despite being highly dependent on favorable environments.
Resumo:
The objective of this work was to compare random regression models for the estimation of genetic parameters for Guzerat milk production, using orthogonal Legendre polynomials. Records (20,524) of test-day milk yield (TDMY) from 2,816 first-lactation Guzerat cows were used. TDMY grouped into 10-monthly classes were analyzed for additive genetic effect and for environmental and residual permanent effects (random effects), whereas the contemporary group, calving age (linear and quadratic effects) and mean lactation curve were analized as fixed effects. Trajectories for the additive genetic and permanent environmental effects were modeled by means of a covariance function employing orthogonal Legendre polynomials ranging from the second to the fifth order. Residual variances were considered in one, four, six, or ten variance classes. The best model had six residual variance classes. The heritability estimates for the TDMY records varied from 0.19 to 0.32. The random regression model that used a second-order Legendre polynomial for the additive genetic effect, and a fifth-order polynomial for the permanent environmental effect is adequate for comparison by the main employed criteria. The model with a second-order Legendre polynomial for the additive genetic effect, and that with a fourth-order for the permanent environmental effect could also be employed in these analyses.
Resumo:
The aim of this work is to present a tutorial on Multivariate Calibration, a tool which is nowadays necessary in basically most laboratories but very often misused. The basic concepts of preprocessing, principal component analysis (PCA), principal component regression (PCR) and partial least squares (PLS) are given. The two basic steps on any calibration procedure: model building and validation are fully discussed. The concepts of cross validation (to determine the number of factors to be used in the model), leverage and studentized residuals (to detect outliers) for the validation step are given. The whole calibration procedure is illustrated using spectra recorded for ternary mixtures of 2,4,6 trinitrophenolate, 2,4 dinitrophenolate and 2,5 dinitrophenolate followed by the concentration prediction of these three chemical species during a diffusion experiment through a hydrophobic liquid membrane. MATLAB software is used for numerical calculations. Most of the commands for the analysis are provided in order to allow a non-specialist to follow step by step the analysis.