127 resultados para MUSCLE DEGENERATION
Resumo:
The objective of the present investigation was to perform a 14-day time-course study of treatment with salbutamol, a ß2 adrenoceptor agonist, on rat soleus muscle in order to assess fiber type selectivity in the hypertrophic response and fiber type composition. Male Wistar rats were divided into four groups: control (N = 10), treated with salbutamol (N = 30), denervated (N = 30), and treated with salbutamol after denervation (N = 30). Salbutamol was injected intraperitoneally in the rats of the 2nd and 4th groups at a concentration of 0.3 mg/kg twice a day for 2 weeks. The muscles were denervated using the crush method with pean. The animals were sacrificed 3, 6, 9, 12, and 14 days after treatment. Frozen cross-sections of soleus muscle were stained for myosin ATPase, pH 9.4. Cross-sectional area and percent of muscle fibers were analyzed morphometrically by computerized image analysis. Treatment with salbutamol induced hypertrophy of all fiber types and a higher percentage of type II fibers (21%) in the healthy rat soleus muscle. Denervation caused marked atrophy of all fibers and conversion from type I to type II muscle fibers. Denervated muscles treated with salbutamol showed a significantly larger cross-sectional area of type I muscle fibers, 28.2% compared to the denervated untreated muscle. Moreover, the number of type I fibers was increased. These results indicate that administration of salbutamol is able to induce changes in cross-sectional area and fiber type distribution in the early phase of treatment. Since denervation-induced atrophy and conversion from type I to type II fibers were improved by salbutamol treatment we propose that salbutamol, like other ß2 adrenoceptor agonists, may have a therapeutic potential in improving the condition of skeletal muscle after denervation.
Resumo:
Cyclosporin-A (CsA) is an immunosuppressive drug that acts as an inhibitor of calcineurin, a calcium phosphatase that has been suggested to play a role in skeletal muscle hypertrophy. The aim of the present study was to determine the effect of CsA administration (25 mg kg-1 day-1) on skeletal muscle mass and phenotype during disuse and recovery. Male Wistar rats received vehicle (N = 8) or CsA (N = 8) during hind limb immobilization (N = 8) and recovery (N = 8). Muscle weight (dry/wet) and cross-sectional area were evaluated to verify the effect of CsA treatment on muscle mass. Muscle phenotype was assessed by histochemistry of myosin ATPase. CsA administration during immobilization and recovery did not change muscle/body weight ratio in the soleus (SOL) or plantaris (PL). Regarding muscle phenotype, we observed a consistent slow-to-fast shift in all experimental groups (immobilized only, receiving CsA only, and immobilized receiving CsA) as compared to control in both SOL and PL (P < 0.05). During recovery, no difference was observed in SOL or PL fiber type composition between the experimental recovered group and recovered group receiving CsA compared to their respective controls. Considering the muscle/body weight ratio, CsA administration does not maximize muscle mass loss induced by immobilization. Our results also indicate that CsA fails to block skeletal muscle regrowth after disuse. The present data suggest that calcineurin inhibition by CsA modulates muscle phenotype rather than muscle mass.
Resumo:
The effects of adding L-carnitine to a whole-body and respiratory training program were determined in moderate-to-severe chronic obstructive pulmonary disease (COPD) patients. Sixteen COPD patients (66 ± 7 years) were randomly assigned to L-carnitine (CG) or placebo group (PG) that received either L-carnitine or saline solution (2 g/day, orally) for 6 weeks (forced expiratory volume on first second was 38 ± 16 and 36 ± 12%, respectively). Both groups participated in three weekly 30-min treadmill and threshold inspiratory muscle training sessions, with 3 sets of 10 loaded inspirations (40%) at maximal inspiratory pressure. Nutritional status, exercise tolerance on a treadmill and six-minute walking test, blood lactate, heart rate, blood pressure, and respiratory muscle strength were determined as baseline and on day 42. Maximal capacity in the incremental exercise test was significantly improved in both groups (P < 0.05). Blood lactate, blood pressure, oxygen saturation, and heart rate at identical exercise levels were lower in CG after training (P < 0.05). Inspiratory muscle strength and walking test tolerance were significantly improved in both groups, but the gains of CG were significantly higher than those of PG (40 ± 14 vs 14 ± 5 cmH2O, and 87 ± 30 vs 34 ± 29 m, respectively; P < 0.05). Blood lactate concentration was significantly lower in CG than in PG (1.6 ± 0.7 vs 2.3 ± 0.7 mM, P < 0.05). The present data suggest that carnitine can improve exercise tolerance and inspiratory muscle strength in COPD patients, as well as reduce lactate production.
Resumo:
The aim of the present investigation was to study the effect of acute swimming training with an anaerobic component on matrix metallopeptidase (MMP) activity and myosin heavy chain gene expression in the rat myocardium. Animals (male Wistar rats, weighing approximately 180 g) were trained for 6 h/day in 3 sessions of 2 h each for 1 to 5 consecutive days (N = 5 rats per group). Rats swam in basins 47 cm in diameter and 60 cm deep filled with water at 33 to 35ºC. After the training period a significant increase (P < 0.05) was observed in the heart weight normalized to body weight by about 22 and 35% in the groups that trained for 96 and 120 h, respectively. Blood lactate levels were significantly increased (P < 0.05) in all groups after all training sessions, confirming an anaerobic component. However, lactate levels decreased (P < 0.05) with days of training, suggesting that the animals became adapted to this protocol. Myosin heavy chain-ß gene expression, analyzed by real time PCR and normalized with GAPDH gene expression, showed a significant two-fold increase (P < 0.01) after 5 days of training. Zymography analysis of myocardium extracts indicated a single ~60-kDa activity band that was significantly increased (P < 0.05) after 72, 96, and 120 h, indicating an increased expression of MMP-2 and suggesting precocious remodeling. Furthermore, the presence of MMP-2 was confirmed by Western blot analysis, but not the presence of MMP-1 and MMP-3. Taken together, our results indicate that in these training conditions, the rat heart undergoes early biochemical and functional changes required for the adaptation to the new physiological condition by tissue remodeling.
Resumo:
The objective of the present study was to assess the effect of transcutaneous electrical diaphragmatic stimulation (TEDS) on different types of diaphragm muscle fibers. Male Wistar rats (8-12 weeks old) were divided into 2 experimental groups (N = 8 in each group): 1) control, 2) animals submitted to TEDS [frequency = 50 Hz; T ON/T OFF (contraction/relaxation time) = 2/2 s; pulse duration = 0.4 ms, intensity = 5 mA with a 1 mA increase every 3 min for 20 min] for 7 days. After completing this treatment period, the I, IIA, IIB, and IID diaphragm muscle fibers were identified using the mATPase technique. Statistical analysis consisted of the normality, homoscedasticity and t-tests (P < 0.05). There was a 19.6% (P < 0.05) reduction in the number of type I fibers and a 49.7% increase (P < 0.05) in type IID fibers in the TEDS group compared with the control group. An important result of the present study was that electrical stimulation with surface electrodes was efficient in altering the distribution of fibers in diaphragm muscle. This therapeutic resource could be used in the treatment of respiratory muscle alterations.
Resumo:
The objective of the present study was to determine to what extent, if any, swimming training applied before immobilization in a cast interferes with the rehabilitation process in rat muscles. Female Wistar rats, mean weight 260.52 ± 16.26 g, were divided into 4 groups of 6 rats each: control, 6 weeks under baseline conditions; trained, swimming training for 6 weeks; trained-immobilized, swimming training for 6 weeks and then immobilized for 1 week; trained-immobilized-rehabilitated, swimming training for 6 weeks, immobilized for 1 week and then remobilized with swimming for 2 weeks. The animals were then sacrificed and the soleus and tibialis anterior muscles were dissected, frozen in liquid nitrogen and processed histochemically (H&E and mATPase). Data were analyzed statistically by the mixed effects linear model (P < 0.05). Cytoarchitectural changes such as degenerative characteristics in the immobilized group and regenerative characteristics such as centralized nucleus, fiber size variation and cell fragmentation in the groups submitted to swimming were more significant in the soleus muscle. The diameters of the lesser soleus type 1 and type 2A fibers were significantly reduced in the trained-immobilized group compared to the trained group (P < 0.001). In the tibialis anterior, there was an increase in the number of type 2B fibers and a reduction in type 2A fibers when trained-immobilized rats were compared to trained rats (P < 0.001). In trained-immobilized-rehabilitated rats, there was a reduction in type 2B fibers and an increase in type 2A fibers compared to trained-immobilized rats (P < 0.009). We concluded that swimming training did not minimize the deleterious effects of immobilization on the muscles studied and that remobilization did not favor tissue re-adaptation.
Resumo:
The aim of the present study was to evaluate the effect of joint immobilization on morphometric parameters and glycogen content of soleus muscle treated with clenbuterol. Male Wistar (3-4 months old) rats were divided into 4 groups (N = 6 for each group): control, clenbuterol, immobilized, and immobilized treated with clenbuterol. Immobilization was performed with acrylic resin orthoses and 10 µg/kg body weight clenbuterol was administered subcutaneously for 7 days. The following parameters were measured the next day on soleus muscle: weight, glycogen content, cross-sectional area, and connective tissue content. The clenbuterol group showed an increase in glycogen (81.6%, 0.38 ± 0.09 vs 0.69 ± 0.06 mg/100 g; P < 0.05) without alteration in weight, cross-sectional area or connective tissue compared with the control group. The immobilized group showed a reduction in muscle weight (34.2%, 123.5 ± 5.3 vs 81.3 ± 4.6 mg; P < 0.05), glycogen content (31.6%, 0.38 ± 0.09 vs 0.26 ± 0.05 mg/100 mg; P < 0.05) and cross-sectional area (44.1%, 2574.9 ± 560.2 vs 1438.1 ± 352.2 µm²; P < 0.05) and an increase in connective tissue (216.5%, 8.82 ± 3.55 vs 27.92 ± 5.36%; P < 0.05). However, the immobilized + clenbuterol group showed an increase in weight (15.9%; 81.3 ± 4.6 vs 94.2 ± 4.3 mg; P < 0.05), glycogen content (92.3%, 0.26 ± 0.05 vs 0.50 ± 0.17 mg/100 mg; P < 0.05), and cross-sectional area (19.9%, 1438.1 ± 352.2 vs 1724.8 ± 365.5 µm²; P < 0.05) and a reduction in connective tissue (52.2%, 27.92 ± 5.36 vs 13.34 ± 6.86%; P < 0.05). Statistical analysis was performed using Kolmogorov-Smirnov and homoscedasticity tests. For the muscle weight and muscle glycogen content, two-way ANOVA and the Tukey test were used. For the cross-sectional area and connective tissue content, Kruskal-Wallis and Tukey tests were used. This study emphasizes the importance of anabolic pharmacological protection during immobilization to minimize skeletal muscle alterations resulting from disuse.
Resumo:
The association of plasma interleukin-6 (IL-6) levels, muscle strength and functional capacity was investigated in a cross-sectional study of community-dwelling elderly women from Belo Horizonte, Brazil. Elderly people who present controlled chronic diseases with no negative impact on physical, psychosocial and mental functionality are considered to be community-dwelling. Psychological and social stress due to unsuccessfully aging can represent a risk for immune system disfunctions. IL-6 levels, isokinetic muscle strength of knee flexion/extension, and functional tests to determine time required to rise from a chair and gait velocity were measured in 57 participants (71.21 ± 7.38 years). Serum levels of IL-6 were measured in duplicate and were performed within one single assay (mouse monoclonal antibody against IL-6; High-Sensitivity, Quantikine®, R & D Systems, USA; intra-assay coefficient of variance = 6.9-7.4%; interassay coefficient of variance = 9.6-6.5%; sensitivity = 0.016-0.110 pg/mL; mean = 0.039 pg/mL). Muscle strength was assessed with the isokinetic dynamometer Biodex System 3 Pro®. After the Shapiro-Wilk normality test was applied, correlations were investigated using Spearman and Kruskal-Wallis tests. Post hoc analysis was performed using the Dunn test. A significant negative correlation was observed between plasma IL-6 levels (1.95 ± 1.77 pg/mL) and muscle strength for knee flexion (70.70 ± 21.14%; r = -0.265; P = 0.047) and extension (271.84 ± 67.85%; r = -0.315; P = 0.017). No significant correlation was observed between IL-6 levels and the functional tests (time to rise from a chair = 14.65 ± 2.82 s and gait velocity = 0.95 ± 0.14 m/s). These results suggest that IL-6 is associated with reduced muscle strength.
Resumo:
Mammalian cells contain several proteolytic systems to carry out the degradative processes and complex regulatory mechanisms to prevent excessive protein breakdown. Among these systems, the Ca2+-activated proteolytic system involves the cysteine proteases denoted calpains, and their inhibitor, calpastatin. Despite the rapid progress in molecular research on calpains and calpastatin, the physiological role and regulatory mechanisms of these proteins remain obscure. Interest in the adrenergic effect on Ca2+-dependent proteolysis has been stimulated by the finding that the administration of β2-agonists induces muscle hypertrophy and prevents the loss of muscle mass in a variety of pathologic conditions in which calpains are activated. This review summarizes evidence indicating that the sympathetic nervous system produces anabolic, protein-sparing effects on skeletal muscle protein metabolism. Studies are reviewed, which indicate that epinephrine secreted by the adrenal medulla and norepinephrine released from adrenergic terminals have inhibitory effects on Ca2+-dependent protein degradation, mainly in oxidative muscles, by increasing calpastatin levels. Evidence is also presented that this antiproteolytic effect, which occurs under both basal conditions and in stress situations, seems to be mediated by β2- and β3-adrenoceptors and cAMP-dependent pathways. The understanding of the precise mechanisms by which catecholamines promote muscle anabolic effects may have therapeutic value for the treatment of muscle-wasting conditions and may enhance muscle growth in farm species for economic and nutritional purposes.
Resumo:
We evaluated the effects of chronic allergic airway inflammation and of treadmill training (12 weeks) of low and moderate intensity on muscle fiber cross-sectional area and mRNA levels of atrogin-1 and MuRF1 in the mouse tibialis anterior muscle. Six 4-month-old male BALB/c mice (28.5 ± 0.8 g) per group were examined: 1) control, non-sensitized and non-trained (C); 2) ovalbumin sensitized (OA, 20 µg per mouse); 3) non-sensitized and trained at 50% maximum speed _ low intensity (PT50%); 4) non-sensitized and trained at 75% maximum speed _ moderate intensity (PT75%); 5) OA-sensitized and trained at 50% (OA+PT50%), 6) OA-sensitized and trained at 75% (OA+PT75%). There was no difference in muscle fiber cross-sectional area among groups and no difference in atrogin-1 and MuRF1 expression between C and OA groups. All exercised groups showed significantly decreased expression of atrogin-1 compared to C (1.01 ± 0.2-fold): PT50% = 0.71 ± 0.12-fold; OA+PT50% = 0.74 ± 0.03-fold; PT75% = 0.71 ± 0.09-fold; OA+PT75% = 0.74 ± 0.09-fold. Similarly significant results were obtained regarding MuRF1 gene expression compared to C (1.01 ± 0.23-fold): PT50% = 0.53 ± 0.20-fold; OA+PT50% = 0.55 ± 0.11-fold; PT75% = 0.35 ± 0.15-fold; OA+PT75% = 0.37 ± 0.08-fold. A short period of OA did not induce skeletal muscle atrophy in the mouse tibialis anterior muscle and aerobic training at low and moderate intensity negatively regulates the atrophy pathway in skeletal muscle of healthy mice or mice with allergic lung inflammation.
Resumo:
Skeletal muscle force production following repetitive contractions is preferentially reduced when muscle is evaluated with low-frequency stimulation. This selective impairment in force generation is called low-frequency fatigue (LFF) and could be dependent on the contraction type. The purpose of this study was to compare LFF after concentric and eccentric maximal and submaximal contractions of knee extensor muscles. Ten healthy male subjects (age: 23.6 ± 4.2 years; weight: 73.8 ± 7.7 kg; height: 1.79 ± 0.05 m) executed maximal voluntary contractions that were measured before a fatigue test (pre-exercise), immediately after (after-exercise) and after 1 h of recovery (after-recovery). The fatigue test consisted of 60 maximal (100%) or submaximal (40%) dynamic concentric or eccentric knee extensions at an angular velocity of 60°/s. The isometric torque produced by low- (20 Hz) and high- (100 Hz) frequency stimulation was also measured at these times and the 20:100 Hz ratio was calculated to assess LFF. One-way ANOVA for repeated measures followed by the Newman-Keuls post hoc test was used to determine significant (P < 0.05) differences. LFF was evident after-recovery in all trials except following submaximal eccentric contractions. LFF was not evident after-exercise, regardless of exercise intensity or contraction type. Our results suggest that low-frequency fatigue was evident after submaximal concentric but not submaximal eccentric contractions and was more pronounced after 1-h of recovery.
Resumo:
Multiple cell membrane alterations have been reported to be the cause of various forms of hypertension. The present study focuses on the lipid portion of the membranes, characterizing the microviscosity of membranes reconstituted with lipids extracted from the aorta and mesenteric arteries of spontaneously hypertensive (SHR) and normotensive control rat strains (WKY and NWR). Membrane-incorporated phospholipid spin labels were used to monitor the bilayer structure at different depths. The packing of lipids extracted from both aorta and mesenteric arteries of normotensive and hypertensive rats was similar. Lipid extract analysis showed similar phospholipid composition for all membranes. However, cholesterol content was lower in SHR arteries than in normotensive animal arteries. These findings contrast with the fact that the SHR aorta is hyporeactive while the SHR mesenteric artery is hyperreactive to vasopressor agents when compared to the vessels of normotensive animal strains. Hence, factors other than microviscosity of bulk lipids contribute to the vascular smooth muscle reactivity and hypertension of SHR. The excess cholesterol in the arteries of normotensive animal strains apparently is not dissolved in bulk lipids and is not directly related to vascular reactivity since it is present in both the aorta and mesenteric arteries. The lower cholesterol concentrations in SHR arteries may in fact result from metabolic differences due to the hypertensive state or to genes that co-segregate with those that determine hypertension during the process of strain selection.
Resumo:
We have demonstrated that a synthetic DNA enzyme targeting early growth response factor-1 (Egr-1) can inhibit neointimal hyperplasia following vascular injury. However, the detailed mechanism of this inhibition is not known. Thus, the objective of the present study was to further investigate potential inhibitory mechanisms. Catalytic DNA (ED5) and scrambled control DNA enzyme (ED5SCR) were synthesized and transfected into primary cultures of rat vascular smooth muscle cells (VSMCs). VSMC proliferation and DNA synthesis were analyzed by the MTT method and BrdU staining, respectively. Egr-1, TGF-β1, p53, p21, Bax, and cyclin D1 expression was detected by RT-PCR and Western blot. Apoptosis and cell cycle assays were performed by FACS. Green fluorescence could be seen localized in the cytoplasm of 70.6 ± 1.52 and 72 ± 2.73% VSMCs 24 h after transfection of FITC-labeled ED5 and ED5SCR, respectively. We found that transfection with ED5 significantly inhibited cultured VSMC proliferation in vitro after 24, 48, and 72 h of serum stimulation, and also effectively decreased the uptake of BrdU by VSMC. ED5 specifically reduced serum-induced Egr-1 expression in VSMCs, further down-regulated the expression of cyclin D1 and TGF-β1, and arrested the cells at G0/G1, inhibiting entry into the S phase. FACS analysis indicated that there was no significant difference in the rate of apoptosis between ED5- and ED5SCR-transfected cells. Thus, ED5 can specifically inhibit Egr-1 expression, and probably inhibits VSMC proliferation by down-regulating the expressions of cyclin D1 and TGF-β1. However, ED5 has no effect on VSMC apoptosis.
Resumo:
We investigated whether fibrin glue (FG) could promote urethral sphincter restoration in muscle-derived stem cell (MDSC)-based injection therapies in a pudendal nerve-transected (PNT) rat, which was used as a stress urinary incontinence (SUI) model. MDSCs were purified from the gastrocnemius muscles of 4-week-old inbred female SPF Wistar rats and labeled with green fluorescent protein. Animals were divided into five groups (N = 15): sham (S), PNT (D), PNT+FG injection (F), PNT+MDSC injection (M), and PNT+MDSC+FG injection (FM). Each group was subdivided into 1- and 4-week groups. One and 4 weeks after injection into the proximal urethra, leak point pressure (LPP) was measured to assess urethral resistance function. Histology and immunohistochemistry were performed 4 weeks after injection. LPP was increased significantly in FM and M animals after implantation compared to group D (P < 0.01), but was not different from group S. LPP was slightly higher in the FM group than in the M group but there was no significant difference between them at different times. Histological and immunohistochemical examination demonstrated increased numbers of surviving MDSCs (109 ± 19 vs 82 ± 11/hpf, P = 0.026), increased muscle/collagen ratio (0.40 ± 0.02 vs 0.34 ± 0.02, P = 0.044), as well as increased microvessel density (16.9 ± 0.6 vs 14.1 ± 0.4/hpf, P = 0.001) at the injection sites in FM compared to M animals. Fibrin glue may potentially improve the action of transplanted MDSCs to restore the histology and function of the urethral sphincter in a SUI rat model. Injection of MDSCs with fibrin glue may provide a novel cellular therapy method for SUI.
Resumo:
We investigated the effect of -174 G/C single-nucleotide polymorphism in the promoter region of the IL6 gene on plasma IL-6 levels and muscle strength, and the relationship between IL-6 levels and muscle strength in elderly women. The sample consisted of 199 elderly residents (73.0 ± 7.8 years old) from rest homes and the community in Belo Horizonte, MG, Brazil. -174 G/C polymorphism was determined by direct sequencing of the product by PCR, and plasma IL-6 concentrations were measured by ELISA. Muscle strength in the knee joint was evaluated using a Biodex System 3 Pro® isokinetic dynamometer. ANCOVA was used to determine the effect of polymorphism on IL-6 levels and muscle strength, and the Pearson correlation coefficient to assess the relationship between IL-6 levels and muscle strength. -174 G/C polymorphism was associated with the plasma IL-6 levels of elderly women (P < 0.01) since homozygotes for the G allele showed high IL-6 levels (GG 3.85 pg/mL, GC + CC 2.13 pg/mL). There was no association of polymorphism on muscle strength (P > 0.05). No association was found between IL-6 levels and knee extensor muscle (r = 0.087, P = 0.306) or flexor (r = -0.011, P = 0.894) strength. An interaction between -174 G/C polymorphism and housing conditions of the sample of elderly women was identified, with the effect of genotype on IL-6 levels being higher in the institutionalized elderly. These results support the evidence that -174 G/C polymorphism of the IL6 gene associates with individual variability of plasma IL-6 levels in elderly women.